首页> 外文期刊>Circuits, systems, and signal processing >An Orthogonal Matching Pursuit Algorithm Based on Singular Value Decomposition
【24h】

An Orthogonal Matching Pursuit Algorithm Based on Singular Value Decomposition

机译:基于奇异值分解的正交匹配追踪算法

获取原文
获取原文并翻译 | 示例

摘要

A recovery algorithm is one of the most important components in compressive sensing. It is responsible for the recovery of sparse coefficients in some bases of the original signal from a set of non-adaptive and underdetermined linear measurements, and it is a key link between the front-end signal sensing system and back-end processing. In this study, an improved orthogonal matching pursuit algorithm based on singular value decomposition is proposed to overcome the limitations of existing algorithms, which effectively eliminates the correlation between the measured values. The results of simulation experiments show that the proposed algorithm significantly improves the average signal-to-noise ratio, and it performs more robustly than the classical orthogonal matching pursuit algorithm.
机译:恢复算法是压缩感测中最重要的组件之一。它负责从一组非自适应和未定的线性测量中恢复原始信号的一些基座中的稀疏系数,并且是前端信号感测系统和后端处理之间的关键链路。在该研究中,提出了一种基于奇异值分解的改进的正交匹配追踪算法,以克服现有算法的局限性,这有效地消除了测量值之间的相关性。仿真实验结果表明,该算法显着提高了平均信噪比,而且比经典正交匹配追踪算法更加强大地执行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号