首页> 外文期刊>Circuits, systems, and signal processing >Multi-step Knowledge-Aided Iterative Conjugate Gradient Algorithms for DOA Estimation
【24h】

Multi-step Knowledge-Aided Iterative Conjugate Gradient Algorithms for DOA Estimation

机译:多步知识辅助迭代共轭梯度算法,用于DOA估计

获取原文
获取原文并翻译 | 示例

摘要

In this work, we present direction-of-arrival (DoA) estimation algorithms based on the Krylov subspace that effectively exploit prior knowledge of the signals that impinge on a sensor array. The proposed multi-step knowledge-aided iterative conjugate gradient (CG) (MS-KAI-CG) algorithms perform subtraction of the unwanted terms found in the estimated covariance matrix of the sensor data. Furthermore, we develop a version of MS-KAI-CG equipped with forward-backward averaging, called MS-KAI-CG-FB, which is appropriate for scenarios with correlated signals. Unlike current knowledge-aided methods, which take advantage of known DoAs to enhance the estimation of the covariance matrix of the input data, the MS-KAI-CG algorithms take advantage of the knowledge of the structure of the forward-backward smoothed covariance matrix and its disturbance terms. Simulations with both uncorrelated and correlated signals show that the MS-KAI-CG algorithms outperform existing techniques.
机译:在这项工作中,我们基于Krylov子空间呈现到达方式(DOA)估计算法,其有效地利用在传感器阵列上冲击的信号的先前知识。所提出的多步知识辅助迭代共轭梯度(CG)(MS-KAI-CG)算法执行在传感器数据的估计协方差矩阵中发现的不需要的术语的减法。此外,我们开发了一个MS-Kai-CG的版本,配备了前后平均,称为MS-KAI-CG-FB,这适用于具有相关信号的场景。与当前知识辅助方法不同,这利用已知的DOAS增强输入数据的协方差矩阵的估计,MS-KAI-CG算法利用前后平滑协方差矩阵的结构的知识和它的扰动术语。具有不相关和相关信号的模拟表明MS-KAI-CG算法优于现有技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号