首页> 外文期刊>Circuits, systems, and signal processing >Multi-step Knowledge-Aided Iterative Conjugate Gradient Algorithms for DOA Estimation
【24h】

Multi-step Knowledge-Aided Iterative Conjugate Gradient Algorithms for DOA Estimation

机译:DOA估计的多步知识辅助迭代共轭梯度算法

获取原文
获取原文并翻译 | 示例

摘要

In this work, we present direction-of-arrival (DoA) estimation algorithms based on the Krylov subspace that effectively exploit prior knowledge of the signals that impinge on a sensor array. The proposed multi-step knowledge-aided iterative conjugate gradient (CG) (MS-KAI-CG) algorithms perform subtraction of the unwanted terms found in the estimated covariance matrix of the sensor data. Furthermore, we develop a version of MS-KAI-CG equipped with forward-backward averaging, called MS-KAI-CG-FB, which is appropriate for scenarios with correlated signals. Unlike current knowledge-aided methods, which take advantage of known DoAs to enhance the estimation of the covariance matrix of the input data, the MS-KAI-CG algorithms take advantage of the knowledge of the structure of the forward-backward smoothed covariance matrix and its disturbance terms. Simulations with both uncorrelated and correlated signals show that the MS-KAI-CG algorithms outperform existing techniques.
机译:在这项工作中,我们提出了一种基于Krylov子空间的到达方向(DoA)估计算法,该算法有效地利用了撞击传感器阵列的信号的先验知识。所提出的多步知识辅助迭代共轭梯度(CG)(MS-KAI-CG)算法对在传感器数据的估计协方差矩阵中找到的不需要项进行减法。此外,我们开发了一种具有向前-向后平均功能的MS-KAI-CG版本,称为MS-KAI-CG-FB,它适用于具有相关信号的场景。与当前的知识辅助方法不同,后者利用已知的DoA来增强输入数据的协方差矩阵的估计,而MS-KAI-CG算法则利用了前向-后向平滑协方差矩阵的结构知识和它的干扰条件。对不相关信号和相关信号的仿真表明,MS-KAI-CG算法优于现有技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号