首页> 外文期刊>Circuits, systems, and signal processing >Robust Methods for Text-Dependent Speaker Verification
【24h】

Robust Methods for Text-Dependent Speaker Verification

机译:可靠的文本相关说话人验证方法

获取原文
获取原文并翻译 | 示例

摘要

In this work, we explore various noise robust techniques at different stages of a Text-Dependent Speaker Verification (TDSV) system. A speech-specific knowledge-based robust end points detection technique is used for noise compensation at signal level. Feature-level compensation is done by using robust features extracted from Hilbert Spectrum (HS) of the Intrinsic Mode Functions obtained from Modified Empirical Mode Decomposition of speech. We also explored a combined temporal and spectral speech enhancement technique prior to the end points detection for enhancing speech regions embedded in noise. All experimental studies are conducted using two databases, namely the RSR2015 and the IITG database. It is found that the use of robust end points detection improves the performance of the TDSV system compared to the energy-based end points detection in both clean and degraded speech conditions. Use of noise robust HS features augmented with Mel-frequency cepstral coefficients further improves the performance of the system. It is also found that the use of speech enhancement prior to signal and feature-level compensation results in further improvement in performance for the low SNR cases. The final combined system obtained by using three robust methods provides a relative improvement from 6 to 25% in terms of the EER, on the RSR2015 database corrupted with Babble noise of varying strength and by around from 30 to 45% relative improvement on the IITG database.
机译:在这项工作中,我们探索了文本相关说话人验证(TDSV)系统不同阶段的各种抗噪技术。基于语音的基于知识的鲁棒端点检测技术用于信号级别的噪声补偿。通过使用从固有模式函数的希尔伯特频谱(HS)中提取的健壮特征来进行特征级别的补偿,固有函数是从语音的经修改的经验模式分解中获得的。我们还探索了端点检测之前的组合时空和频谱语音增强技术,以增强嵌入噪声中的语音区域。所有实验研究均使用两个数据库进行,即RSR2015和IITG数据库。发现在健壮和恶化的语音条件下,与基于能量的端点检测相比,使用健壮的端点检测可以提高TDSV系统的性能。使用增强了Mel频率倒谱系数的抗噪HS特性可以进一步改善系统性能。还发现,在信号和特征级补偿之前使用语音增强功能可进一步改善低SNR情况下的性能。通过使用三种鲁棒方法获得的最终组合系统,在被不同强度的Babble噪声破坏的RSR2015数据库上,在EER方面相对提高了6%至25%,在IITG数据库上相对提高了约30%至45% 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号