首页> 外文期刊>Circuits, systems, and signal processing >Modified Incremental LMS with Improved Stability via Convex Combination of Two Adaptive Filters
【24h】

Modified Incremental LMS with Improved Stability via Convex Combination of Two Adaptive Filters

机译:通过两个自适应滤波器的凸组合提高稳定性的改进增量式LMS

获取原文
获取原文并翻译 | 示例

摘要

In distributed networks, the conventional incremental mode of cooperation between the nodes may suffer instability due to two major reasons: (1) large local errors due to accidental problems, and (2) instability due to link failure or noisy link. This causes error propagation through the entire network resulting in divergence. In this research, we propose a novel incremental least mean square algorithm with improved stability by employing convex combination of two filters. Adaptation of one filter is based on the estimate of the adjacent node (incremental type), while that of the other is based on the estimate of the current local node at previous time instant. These two filters are then fused together by using a suitable mixing parameter. An adaptive mixing parameter is further proposed for this convex combination, ensuing dynamic assignment of the weights for the two combining filters. Steady state excess mean square error is derived for the proposed convex combination, and simulations are presented to validate the proposed claims.
机译:在分布式网络中,由于两个主要原因,节点之间的常规协作增量模式可能会遭受不稳定的影响:(1)由于意外问题而导致的大量本地错误;以及(2)由于链路故障或噪声链路而导致的不稳定。这导致错误在整个网络中传播,从而导致发散。在这项研究中,我们提出了一种新颖的增量最小均方算法,该算法通过使用两个滤波器的凸组合来提高稳定性。一个过滤器的自适应基于相邻节点的估计(增量类型),而另一个过滤器的自适应则基于先前时刻的当前本地节点的估计。然后通过使用合适的混合参数将这两个过滤器融合在一起。还针对该凸组合提出了自适应混合参数,从而确保了两个组合滤波器的权重的动态分配。针对所提出的凸组合导出稳态多余均方误差,并进行了仿真以验证所提出的权利要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号