首页> 外文期刊>Circuits, systems, and signal processing >Compressed Domain Video Abstraction Based on I-Frame of HEVC Coded Videos
【24h】

Compressed Domain Video Abstraction Based on I-Frame of HEVC Coded Videos

机译:基于HEVC编码视频I帧的压缩域视频抽象

获取原文
获取原文并翻译 | 示例

摘要

Video abstraction allows indexing, searching, browsing and evaluating a video only by accessing its useful contents. Several studies have been done in this field, but most of them are in pixel domain and require decoding process. It makes these methods more time and process consuming than compressed domain video abstraction. In this paper, we present a new video abstraction method in H.265/HEVC compressed domain, HVAIF. The method is based on the normalized histogram of extracted I-frame prediction modes from an H.265/HEVC coded video. The frames' similarity is calculated by intersecting their I-frame prediction modes' histogram. The similarity measure detects and removes redundant key-frames to increase the quality of final video abstraction. Moreover, we employ fuzzy c-means clustering to categorize similar frames and extract key-frames as representatives of the entire video frames. The interpretation of the results shows that using the proposed method achieves on average 86% accuracy and 19% error rate in compressed domain video abstraction which is higher than the other tested methods in the pixel domain. Also, it has an acceptable robustness to coding parameters, and on average it generates video key-frames that are closer to human summaries.
机译:视频抽象仅允许通过访问视频的有用内容来对其进行索引,搜索,浏览和评估。在该领域已经进行了一些研究,但是大多数研究在像素域中并且需要解码过程。与压缩域视频抽象相比,这使这些方法更加耗时且耗时。在本文中,我们提出了一种在H.265 / HEVC压缩域HVAIF中的新视频抽象方法。该方法基于从H.265 / HEVC编码视频中提取的I帧预测模式的归一化直方图。帧的相似性是通过相交其I帧预测模式的直方图来计算的。相似性度量可检测并删除冗余关键帧,以提高最终视频抽象的质量。此外,我们采用模糊c均值聚类对相似帧进行分类,并提取关键帧作为整个视频帧的代表。结果的解释表明,使用该方法在压缩域视频抽象中平均可达到86%的精度和19%的错误率,这比在像素域中的其他测试方法要高。而且,它对编码参数具有可接受的鲁棒性,并且平均而言,它会生成更接近人类摘要的视频关键帧。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号