首页> 外文期刊>Journal of visual communication & image representation >Frame-wise detection of relocated I-frames in double compressed H.264 videos based on convolutional neural network
【24h】

Frame-wise detection of relocated I-frames in double compressed H.264 videos based on convolutional neural network

机译:基于卷积神经网络的双压缩H.264视频中重定位I帧的逐帧检测

获取原文
获取原文并翻译 | 示例

摘要

Relocated I-frames are a key type of abnormal inter-coded frame in double compressed videos with shifted GOP structures. In this work, a frame-wise detection method of relocated I-frame is proposed based on convolutional neural network (CNN). The proposed detection framework contains a novel network architecture, which initializes with a preprocessing layer and is followed by a well-designed CNN. In the preprocessing layer, the high-frequency component extraction operation is applied to eliminate the influence of diverse video contents. To mitigate overfitting, several advanced structures, such as 1 x 1 convolutional filter and the global average-pooling layer, are carefully introduced in the design of the CNN architecture. Public available YUV sequences are collected to construct a dataset of double compressed videos with different coding parameters. According to the experiments, the proposed framework can achieve a more promising performance of relocated I-frame detection than a well-known CNN structure (AlexNet) and the method based on average prediction residual. (C) 2017 Elsevier Inc. All rights reserved.
机译:重定位的I帧是GOP结构移位的双压缩视频中异常帧间编码帧的关键类型。在这项工作中,提出了一种基于卷积神经网络(CNN)的重定位I帧的逐帧检测方法。所提出的检测框架包含一个新颖的网络体系结构,该体系结构通过预处理层进行初始化,然后再进行精心设计的CNN。在预处理层中,应用高频分量提取操作以消除各种视频内容的影响。为了减轻过度拟合,在CNN架构的设计中仔细引入了一些高级结构,例如1 x 1卷积滤波器和全局平均池层。收集公共可用的YUV序列以构建具有不同编码参数的双压缩视频的数据集。根据实验,与已知的CNN结构(AlexNet)和基于平均预测残差的方法相比,所提出的框架可以实现更有希望的重定位I帧检测性能。 (C)2017 Elsevier Inc.保留所有权利。

著录项

  • 来源
  • 作者单位

    Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai, Peoples R China|Natl Engn Lab Informat Content Anal Tech, GT036001, Shanghai, Peoples R China;

    Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai, Peoples R China|Natl Engn Lab Informat Content Anal Tech, GT036001, Shanghai, Peoples R China;

    Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai, Peoples R China|Natl Engn Lab Informat Content Anal Tech, GT036001, Shanghai, Peoples R China;

    Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai, Peoples R China|Natl Engn Lab Informat Content Anal Tech, GT036001, Shanghai, Peoples R China;

    Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai, Peoples R China|Natl Engn Lab Informat Content Anal Tech, GT036001, Shanghai, Peoples R China;

    Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai, Peoples R China|Natl Engn Lab Informat Content Anal Tech, GT036001, Shanghai, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Double compression detection; Data-driven methodology; Convolutional neural network; Video forensics;

    机译:双压缩检测;数据驱动方法;卷积神经网络;视频取证;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号