首页> 外文期刊>Circuits, systems, and signal processing >A Reconfigurable Hardware Architecture for Principal Component Analysis
【24h】

A Reconfigurable Hardware Architecture for Principal Component Analysis

机译:用于主成分分析的可重构硬件体系结构

获取原文
获取原文并翻译 | 示例

摘要

Principal component analysis (PCA) is one of the widely used techniques for dimensionality reduction in multivariate statistical analysis. This article presents an efficient architecture design and implementation of the PCA algorithm on a field-programmable gate array (FPGA). The designed reconfigurable architecture is modeled in both floating-point and fixed-point representations using our custom-developed library of numerical operations. The PCA architecture supports input dataset matrices with parameterizable dimensions. The synthesizable model of the PCA architecture is modeled in Verilog hardware description language, and its cycle-accurate and bit-true simulation results are verified against its software simulation models. The characteristics and implementation results of the PCA architecture on a Xilinx Virtex-7 FPGA and in a standard 45-nm CMOS technology are presented. The execution times of the implemented PCA system on the FPGA for different data sizes are compared with those of the graphics processing unit and general-purpose processor implementations. To the best of our knowledge, this work is the first high-throughput design and implementation of the reconfigurable PCA architecture, including both the learning and mapping phases, on a single FPGA.
机译:主成分分析(PCA)是在多元统计分析中用于降维的一种广泛使用的技术。本文介绍了现场可编程门阵列(FPGA)上PCA算法的高效架构设计和实现。使用我们自定义开发的数值运算库,可以在浮点和定点表示中对设计的可重配置体系结构进行建模。 PCA体系结构支持具有可参数化维度的输入数据集矩阵。 PCA体系结构的可综合模型以Verilog硬件描述语言建模,并针对其软件仿真模型验证了其周期精确性和位真仿真结果。给出了在Xilinx Virtex-7 FPGA和标准45纳米CMOS技术上PCA架构的特性和实现结果。比较了FPGA上已实现的PCA系统针对不同数据大小的执行时间与图形处理单元和通用处理器实现的执行时间。据我们所知,这项工作是可重配置PCA架构的首次高通量设计和实现,包括在单个FPGA上的学习和映射阶段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号