首页> 外文期刊>Circuits, systems, and signal processing >Mathematical mixed-integer programming for solving a new optimization model of selective image restoration: modelling and resolution by CHN and GA
【24h】

Mathematical mixed-integer programming for solving a new optimization model of selective image restoration: modelling and resolution by CHN and GA

机译:数学混合整数规划,用于解决选择性图像恢复的新优化模型:CHN和GA的建模和分辨率

获取原文
获取原文并翻译 | 示例

摘要

In grey-level image restoration, a prior knowledge of degraded areas allows, thanks to the selective filtering, to achieve a good protection of the image features. In this paper, we propose a quadratic programming-based technique that deals with the issue of details preservation during the restoration process. Based on the classical model of image restoration, we build a modified model by introducing a set of binary variables that indicate the pixel categories. We combine each pixel with the median of its neighbours in a decision rule so that one of them generates the optimal solution. The obtained model is a nonlinear mixed-integer problem where resolution by exact methods is not feasible. In this regard, we use both of the continuous Hopfield neural network and the genetic algorithm to solve the suggested model. Performance of our method is demonstrated numerically and visually by several computational tests.
机译:在灰度图像恢复中,由于选择性过滤,对退化区域的先验知识可以实现对图像特征的良好保护。在本文中,我们提出了一种基于二次编程的技术,该技术处理还原过程中的细节保存问题。基于经典的图像恢复模型,我们通过引入一组指示像素类别的二进制变量来构建修改后的模型。我们在决策规则中将每个像素与其相邻像素的中位数结合在一起,以便其中一个生成最佳解。所获得的模型是非线性混合整数问题,无法通过精确方法进行解析。在这方面,我们使用连续Hopfield神经网络和遗传算法来求解建议的模型。通过几种计算测试,从数值和视觉上证明了我们方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号