首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Quadtree-structured variable-size block-matching motion estimationwith minimal error
【24h】

Quadtree-structured variable-size block-matching motion estimationwith minimal error

机译:四叉树结构可变大小块匹配运动估计,误差最小

获取原文
获取原文并翻译 | 示例

摘要

This paper reports two efficient quadtree-based algorithms for variable-size block matching (VSBM) motion estimation. The schemes allow the dimensions of blocks to adapt to local activity within the image, and the total number of blocks in any frame can be varied while still accurately representing true motion. This permits adaptive bit allocation between the representation of displacement and residual data, and also the variation of the overall bit-rate on a frame-by-frame basis. The first algorithm computes the optimal selection of variable-sized blocks to provide the best-achievable prediction error under the fixed number of blocks for a quadtree-based VSBM technique. The algorithm employs an efficient dynamic programming technique utilizing the special structure of a quadtree. Although this algorithm is computationally intensive, it does provide a yardstick by which the performance of other more practical VSBM techniques can be measured. The second algorithm adopts a heuristic way to select variable-sized square blocks. It relies more on local motion information than on global error optimization. Experiments suggest that the effective use of local information contributes to minimizing the overall error. The result is a more computationally efficient VSBM technique than the optimal algorithm, but with a comparable prediction error
机译:本文报告了两种有效的基于四叉树的可变大小块匹配(VSBM)运动估计算法。该方案允许块的尺寸适应图像内的局部活动,并且在仍然准确地表示真实运动的同时,可以改变任何帧中的块的总数。这允许在位移和残差数据的表示之间进行自适应位分配,并允许逐帧地改变整体位速率。对于基于四叉树的VSBM技术,第一种算法计算可变大小块的最佳选择,以在固定数量的块下提供最佳可实现的预测误差。该算法采用了一种有效的动态编程技术,该技术利用了四叉树的特殊结构。尽管此算法的计算量很大,但它确实提供了一个衡量标准,可以用来衡量其他更实用的VSBM技术的性能。第二种算法采用启发式方法来选择可变大小的正方形块。它更依赖于局部运动信息,而不是全局误差优化。实验表明,有效利用本地信息有助于最大程度地减少总体错误。结果是比最佳算法更具计算效率的VSBM技术,但具有可比的预测误差

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号