首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Quantifying and recognizing human movement patterns from monocular video Images-part I: a new framework for modeling human motion
【24h】

Quantifying and recognizing human movement patterns from monocular video Images-part I: a new framework for modeling human motion

机译:从单眼视频图像量化和识别人体运动模式-第一部分:建模人体运动的新框架

获取原文
获取原文并翻译 | 示例

摘要

Research into tracking and recognizing human movement has so far been mostly limited to gait or frontal posing. Part I of this paper presents a continuous human movement recognition (CHMR) framework which forms a basis for the general biometric analysis of continuous human motion as demonstrated through tracking and recognition of hundreds of skills from gait to twisting saltos. Part II of this paper presents CHMR applications to the biometric authentication of gait, anthropometric data, human activities, and movement disorders. In Part I of this paper, a novel three-dimensional color clone-body-model is dynamically sized and texture mapped to each person for more robust tracking of both edges and textured regions. Tracking is further stabilized by estimating the joint angles for the next frame using a forward smoothing particle filter with the search space optimized by utilizing feedback from the CHMR system. A new paradigm defines an alphabet of dynemes, units of full-body movement skills, to enable recognition of diverse skills. Using multiple hidden Markov models, the CHMR system attempts to infer the human movement skill that could have produced the observed sequence of dynemes. The novel clone-body-model and dyneme paradigm presented in this paper enable the CHMR system to track and recognize hundreds of full-body movement skills, thus laying the basis for effective biometric authentication associated with full-body motion and body proportions.
机译:迄今为止,对跟踪和识别人体运动的研究大多仅限于步态或正面姿势。本文的第一部分介绍了一种连续人体运动识别(CHMR)框架,该框架通过跟踪和识别从步态到扭曲盐沼的数百种技能,为连续人体运动的一般生物特征分析奠定了基础。本文的第二部分介绍了CHMR在步态,人体测量数据,人类活动和运动障碍的生物特征认证中的应用。在本文的第一部分中,动态调整了一个新颖的三维彩色克隆体模型的大小,并将纹理映射到每个人,以便更可靠地跟踪边缘和纹理区域。通过使用前向平滑粒子滤波器估计下一帧的关节角度,进一步稳定跟踪,并利用来自CHMR系统的反馈来优化搜索空间。一个新的范例定义了达尼尔字母,即全身运动技能的单位,以使人们能够识别各种技能。 CHMR系统使用多个隐藏的马尔可夫模型,试图推断可能产生观测到的达因序列的人类运动技巧。本文提出的新型克隆体模型和dyneme范式使CHMR系统能够跟踪和识别数百种全身运动技能,从而为与全身运动和身体比例相关的有效生物特征认证奠定了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号