首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Compressing the illumination-adjustable images with principal component analysis
【24h】

Compressing the illumination-adjustable images with principal component analysis

机译:通过主成分分析压缩可调节照明的图像

获取原文
获取原文并翻译 | 示例

摘要

The ability to change illumination is a crucial factor in image-based modeling and rendering. Image-based relighting offers such capability. However, the tradeoff is the enormous increase of storage requirement. In this paper, we propose a compression scheme that effectively reduces the data volume while maintaining the real-time relighting capability. The proposed method is based on principal component analysis (PCA). A block-wise PCA is used to practically process the huge input data. The output of PCA is a set of eigenimages and the corresponding relighting coefficients. By dropping those low-energy eigenimages, the data size is drastically reduced. To further compress the data, eigenimages left are compressed using transform coding and quantization while the relighting coefficients are compressed using uniform quantization. We also suggest the suitable target bit rate for each phase of the compression method in order to preserve the visual quality. Finally, we propose a real-time engine that relights images from the compressed data.
机译:更改照明的能力是基于图像的建模和渲染的关键因素。基于图像的重新照明提供了这种功能。但是,折衷方案是存储需求的巨大增加。在本文中,我们提出了一种压缩方案,该方案可在保持实时重新照明功能的同时有效减少数据量。所提出的方法基于主成分分析(PCA)。逐块PCA实际上用于处理大量输入数据。 PCA的输出是一组特征图像和相应的重新照明系数。通过丢弃那些低能量本征图像,可以大大减少数据大小。为了进一步压缩数据,使用变换编码和量化来压缩剩下的特征图像,同时使用均匀量化来压缩重照明系数。我们还建议为压缩方法的每个阶段使用合适的目标比特率,以保持视觉质量。最后,我们提出了一个实时引擎,可以对压缩数据中的图像进行重新照明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号