首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >An Object- and User-Driven System for Semantic-Based Image Annotation and Retrieval
【24h】

An Object- and User-Driven System for Semantic-Based Image Annotation and Retrieval

机译:对象和用户驱动的基于语义的图像注释和检索系统

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a system for object-based semi-automatic indexing and retrieval of natural images is introduced. Three important concepts underpin the proposed system: a new strategy to fuse different low-level content descriptions; a learning technique involving user relevance feedback; and a novel object based model to link semantic terms and visual objects. To achieve high accuracy in the retrieval and subsequent annotation processes several low-level image primitives are combined in a suitable multifeatures space. This space is modelled in a structured way exploiting both low-level features and spatial contextual relations of image blocks. Support vector machines are used to learn from gathered information through relevance feedback. An adaptive convolution kernel is defined to handle the proposed structured multifeature space. The positive definite property of the introduced kernel is proven, as essential condition for uniqueness and optimality of the convex optimization in support vector machines. The proposed system has been thoroughly evaluated and selected results are reported in this paper
机译:本文介绍了一种基于对象的自然图像半自动索引和检索系统。提议的系统支持三个重要概念:融合不同低级内容描述的新策略;一种涉及用户相关性反馈的学习技术;一种新颖的基于对象的模型来链接语义术语和视觉对象。为了在检索和后续注释过程中实现高精度,几个低级图像基元在适当的多功能空间中进行了组合。该空间以结构化的方式建模,同时利用了图像块的低级特征和空间上下文关系。支持向量机用于通过相关性反馈从收集的信息中学习。定义了一个自适应卷积核来处理所提出的结构化多特征空间。证明了引入核的正定性是支持向量机凸优化的唯一性和最优性的必要条件。对该提议的系统进行了全面评估,并在本文中报告了选定的结果

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号