首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >A Study of Quality Issues for Image Auto-Annotation With the Corel Dataset
【24h】

A Study of Quality Issues for Image Auto-Annotation With the Corel Dataset

机译:使用Corel数据集进行图像自动注释的质量问题的研究

获取原文
获取原文并翻译 | 示例

摘要

The Corel Image set is widely used for image annotation performance evaluation although it has been claimed that Corel images are relatively easy to annotate. The aim of this paper is to demonstrate some of the disadvantages of datasets like the Corel set for effective auto-annotation evaluation. We first compare the performance of several annotation algorithms using the Corel set and find that simple near neighbor propagation techniques perform fairly well. A support vector machine (SVM)-based annotation method achieves even better results, almost as good as the best found in the literature. We then build a new image collection using the Yahoo Image Search engine and query-by-single-word searches to create a more challenging annotated set automatically. Then, using three very different image annotation methods, we demonstrate some of the problems of annotation using the Corel set compared with the Yahoo-based training set. In both cases the training sets are used to create a set of annotations for the Corel test set
机译:尽管已经宣称Corel图像相对易于注释,但Corel Image集被广泛用于图像注释性能评估。本文的目的是演示一些数据集的一些缺点,例如用于有效的自动注释评估的Corel集。我们首先比较使用Corel集的几种注释算法的性能,发现简单的近邻传播技术的性能相当好。基于支持向量机(SVM)的注释方法甚至可以达到更好的结果,几乎与文献中的最佳结果一样好。然后,我们使用Yahoo图像搜索引擎和单字查询来构建新的图像集合,以自动创建更具挑战性的带注释集。然后,使用三种非常不同的图像注释方法,与基于Yahoo的训练集相比,我们演示了使用Corel集进行注释的一些问题。在这两种情况下,训练集都用于为Corel测试集创建一组注释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号