首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >An ICA Mixture Hidden Markov Model for Video Content Analysis
【24h】

An ICA Mixture Hidden Markov Model for Video Content Analysis

机译:用于视频内容分析的ICA混合隐马尔可夫模型

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new theoretical framework based on hidden Markov model (HMM) and independent component analysis (ICA) mixture model is presented for content analysis of video, namely ICAMHMM. Unlike the Gaussian mixture observation model commonly used in conventional HMM applications, the observations in the new ICAMHMM are modeled as a mixture of non-Gaussian components. Each non-Gaussian component is formulated by an ICA mixture, reflecting the independence of different components across video frames. In addition, to construct a compact feature space to represent a video frame, ICA is applied on video frames and the ICA coefficients are used to form a compact 2-D feature subspace that makes the subsequent modeling computationally efficient. The model parameters can be identified using supervised learning by the training sequences. The new re-estimation learning formulae of iterative ICAMHMM parameter estimation are derived based on a maximum likelihood function. Employing the identified model, maximum likelihood algorithms are developed to detect and recognize video events. As a case study, golf video sequences are used to test the effectiveness of the proposed algorithm. Experimental results show that the presented method can effectively detect and recognize the recurrent event patterns in video data. The presented new ICAMHMM is generic and can be applied to sequential data analysis in other applications.
机译:本文提出了一种基于隐马尔可夫模型(HMM)和独立分量分析(ICA)混合模型的新理论框架,即ICAMHMM。与常规HMM应用程序中通常使用的高斯混合观测模型不同,新ICAMHMM中的观测被建模为非高斯分量的混合物。每个非高斯分量均由ICA混合表示,反映了视频帧中不同分量的独立性。另外,为了构造表示视频帧的紧凑特征空间,在视频帧上应用ICA,并将ICA系数用于形成紧凑的2D特征子空间,从而使后续建模在计算上更加有效。可以通过训练序列使用监督学习来识别模型参数。基于最大似然函数推导了迭代ICAMHMM参数估计的新的重新估计学习公式。利用所识别的模型,开发了最大似然算法来检测和识别视频事件。作为案例研究,使用高尔夫视频序列来测试所提出算法的有效性。实验结果表明,该方法可以有效地检测和识别视频数据中的重复事件模式。提出的新ICAMHMM是通用的,可以应用于其他应用程序中的顺序数据分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号