首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >Automatic Detection and Analysis of Player Action in Moving Background Sports Video Sequences
【24h】

Automatic Detection and Analysis of Player Action in Moving Background Sports Video Sequences

机译:运动背景体育视频序列中运动员动作的自动检测和分析

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a system for automatically detecting and analyzing complex player actions in moving background sports video sequences, aiming at action-based sports videos indexing and providing kinematic measurements for coach assistance and performance improvement. The system works in a coarse-to-fine fashion. For an input video, in the coarse granularity level, we automatically segment the highlights, that is, the video clips containing the desired action as summaries for general user viewing purposes; in the middle granularity level, we recognize the action types to support action-based video indexing and retrieval; and finally in the fine granularity level, the critical kinematic parameters of player action are obtained for sports professionals' training purposes. However, the complex and dynamic background of sports videos and the complexity of player actions bring considerable difficulty to the automatic analysis. To fulfill such a challenging task, robust algorithms including global motion estimation with adaptive outliers filtering, object segmentation based on adaptive background construction, and automatic human body tracking are proposed in this paper. Two visual analyzing tools: motion panorama and overlay composition, are also introduced. Real diving and jump game videos are used to test the proposed system and algorithms, and the extensive and encouraging experimental results show their effectiveness.
机译:本文提出了一种系统,该系统可自动检测和分析运动背景体育视频序列中的复杂运动员动作,旨在基于动作的体育视频索引并提供运动学测量结果,以帮助教练并改善性能。该系统以从粗到精的方式工作。对于输入视频,在粗粒度级别上,我们会自动对亮点进行细分,即包含所需动作的视频片段作为摘要,以供一般用户观看;在中等粒度级别,我们识别动作类型以支持基于动作的视频索引和检索;最后,在细粒度水平上,获得运动员动作的关键运动学参数以用于体育专业人士的训练目的。然而,体育视频的复杂动态背景以及玩家动作的复杂性给自动分析带来了很大的困难。为了完成这一具有挑战性的任务,本文提出了鲁棒的算法,包括具有自适应离群值滤波的全局运动估计,基于自适应背景构造的对象分割以及自动人体跟踪。还介绍了两个视觉分析工具:运动全景和叠加合成。真实的跳水和跳跃游戏视频用于测试所提出的系统和算法,广泛而令人鼓舞的实验结果证明了它们的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号