首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Robust Head Tracking Based on Multiple Cues Fusion in the Kernel-Bayesian Framework
【24h】

Robust Head Tracking Based on Multiple Cues Fusion in the Kernel-Bayesian Framework

机译:核-贝叶斯框架下基于多线索融合的鲁棒头部跟踪

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a robust head tracking algorithm based on multiple cues fusion in a kernel-Bayesian framework. In this algorithm, the object to be tracked is characterized using a spatial-constraint mixture of the Gaussians-based appearance model and a multichannel chamfer matching-based shape model. These two models complement each other and their combination is discriminative in distinguishing the object from the background. A selective updating technique for the appearance model is employed to accommodate appearance and illumination changes. Meantime, the kernel method-mean shift algorithm is embedded into the Bayesian framework to give a heuristic prediction in the hypotheses generation process. This alleviates the great computational load suffered by conventional Bayesian trackers. Experimental results demonstrate that the proposed algorithm is effective.
机译:本文提出了一种鲁棒的头部跟踪算法,该算法基于核-贝叶斯框架中的多线索融合。在该算法中,使用基于高斯的外观模型和基于多通道倒角匹配的形状模型的空间约束混合来表征要跟踪的对象。这两种模型相辅相成,并且它们的组合在区分对象和背景方面具有区别性。采用外观模型的选择性更新技术来适应外观和照明变化。同时,将核方法-均值偏移算法嵌入贝叶斯框架中,以在假设生成过程中进行启发式预测。这减轻了常规贝叶斯跟踪器遭受的巨大计算负荷。实验结果表明,该算法是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号