首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Fully Unsupervised Learning of Camera Link Models for Tracking Humans Across Nonoverlapping Cameras
【24h】

Fully Unsupervised Learning of Camera Link Models for Tracking Humans Across Nonoverlapping Cameras

机译:相机链接模型的完全无监督学习,可跨非重叠相机跟踪人类

获取原文
获取原文并翻译 | 示例

摘要

A multiple-camera tracking system that tracks humans across cameras with nonoverlapping views is proposed in this paper. The systematically estimated camera link model, including transition time distribution, brightness transfer function, region mapping matrix, region matching weights, and feature fusion weights, is utilized to facilitate consistently labeling the tracked humans. The system is divided into two stages: in the training stage, based on an unsupervised scheme, we formulate the estimation of the camera link model as an optimization problem, in which temporal features, holistic color features, region color features, and region texture features are jointly considered. The deterministic annealing is applied to effectively search the optimal model solutions. The unsupervised learning scheme tolerates the presence of outliers in the training data well. In the testing stage, the systematic integration of multiple cues from the above features enables us to perform an effective reidentification. The camera link model can be continuously updated during tracking in the testing stage to adapt the changes of the environment. Several simulations and comparative studies demonstrate the superiority of our proposed estimation method to the others. Moreover, the complete system has been tested in a small-scale real-world camera network scenario.
机译:本文提出了一种多摄像机跟踪系统,该系统可以在不重叠视图的情况下跨摄像机跟踪人类。系统地估计的相机链接模型,包括过渡时间分布,亮度传递函数,区域映射矩阵,区域匹配权重和特征融合权重,被用来促进一致地标记被跟踪的人。该系统分为两个阶段:在训练阶段,基于无监督方案,我们将相机链接模型的估计公式化为一个优化问题,其中时间特征,整体颜色特征,区域颜色特征和区域纹理特征共同考虑。确定性退火被用于有效地搜索最优模型解。无监督学习方案可以很好地容忍训练数据中存在异常值。在测试阶段,通过上述功能对多个线索进行系统集成,使我们能够执行有效的重新识别。相机链接模型可以在测试阶段的跟踪过程中不断更新,以适应环境的变化。若干模拟和比较研究证明了我们提出的估计方法优于其他方法的优势。此外,完整的系统已经在小规模的真实相机网络场景中进行了测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号