首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >Multiperson Tracking by Online Learned Grouping Model With Nonlinear Motion Context
【24h】

Multiperson Tracking by Online Learned Grouping Model With Nonlinear Motion Context

机译:带有非线性运动上下文的在线学习分组模型的多人跟踪

获取原文
获取原文并翻译 | 示例

摘要

An online approach to learn elementary groups containing only two targets, i.e., pedestrians, for inferring high-level context is introduced to improve multiperson tracking. In most existing data association-based tracking approaches, only low-level information (e.g., time, appearance, and motion) is used to build the affinity model, and each target is considered as an independent agent. Unlike those previous methods, in this paper, an online learned social grouping behavior model is used to provide more robust tracklet affinities. A disjoint grouping graph is used to encode social grouping behavior of pairwise targets, where each node represents an elementary group of two targets, and two nodes are connected if they share a common target. Probabilities of the uncertain target in two connected nodes being the same person are inferred from each edge of the grouping graph. Relationships between elementary groups are discovered by group tracking, and a nonlinear motion map is used for explaining nonlinear motion pattern between elementary groups. The proposed method is efficient, able to handle group split and merge, and can be easily integrated into any basic affinity model. The approach is evaluated on four data sets, and it shows significant improvements compared with state-of-the-art methods.
机译:为了改进多人跟踪,引入了一种在线方法来学习仅包含两个目标即行人的基本群体以推断高级上下文。在大多数现有的基于数据关联的跟踪方法中,仅使用低级信息(例如时间,外观和运动)来构建亲和力模型,并且每个目标都被视为独立的主体。与以前的方法不同,本文使用在线学习的社交分组行为模型来提供更强大的Tracklet亲和力。不相交的分组图用于对成对目标的社交分组行为进行编码,其中每个节点代表两个目标的基本组,并且如果两个节点共享一个公共目标,则两个节点会连接在一起。从分组图的每个边缘推断出在两个连接的节点中同一个人的不确定目标的概率。通过组跟踪发现基本组之间的关系,并使用非线性运动图来解释基本组之间的非线性运动模式。所提出的方法是有效的,能够处理组的分裂和合并,并且可以容易地集成到任何基本的亲和力模型中。该方法在四个数据集上进行了评估,与最先进的方法相比,显示出显着的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号