首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >Adaptive Content Condensation Based on Grid Optimization for Thumbnail Image Generation
【24h】

Adaptive Content Condensation Based on Grid Optimization for Thumbnail Image Generation

机译:基于网格的自适应内容压缩技术在缩略图图像生成中的应用

获取原文
获取原文并翻译 | 示例

摘要

An ideal thumbnail generator should effectively condense unimportant regions and keep the important content undeformed, completed, and at a proper scale, i.e., accuracy, completeness, and sufficiency. Each retargeting method has its own advantage for resizing arbitrary images. However, they often ignore the completeness and sufficiency for information presentation in thumbnails. In this paper, we formulate thumbnail generation as an image content condensation problem and propose a unified grid optimization framework to fuse multiple operators. From the view of accuracy, completeness, and sufficiency for information presentation, we exploit complementary relationships among three condensation operators and fuse them into a unified grid-based convex programming problem, which could be solved simultaneously and efficiently through numerical optimization. Besides warping energy to preserve the geometric structure of important objects, we put forward two grid-based energy terms to keep the completeness of important objects and retain them at a proper size. Finally, an adaptive procedure is proposed to dynamically adjust the contribution of loss functions for achieving optimal content condensation. Both qualitative and quantitative comparison results demonstrate that the proposed method achieves an excellent tradeoff among accuracy, completeness, and sufficiency of information preservation. The experimental results show that our approach is obviously superior to the state-of-the-art techniques.
机译:理想的缩略图生成器应有效地压缩不重要的区域,并使重要内容保持正确,正确,完整和足够的大小,并且不变形,不完整。每种重定目标方法都有其自己的优势,可用于调整任意图像的大小。但是,他们经常忽略缩略图中信息表示的完整性和充分性。在本文中,我们将缩略图生成公式化为图像内容压缩问题,并提出一个统一的网格优化框架来融合多个运算符。从信息表示的准确性,完整性和充分性的角度出发,我们利用三个缩合算符之间的互补关系,并将它们融合为一个统一的基于网格的凸规划问题,可以通过数值优化同时有效地解决该问题。除了扭曲能量以保留重要物体的几何结构外,我们还提出了两个基于网格的能量项,以保持重要物体的完整性并将它们保持在适当的大小。最后,提出了一种自适应过程来动态调整损失函数的贡献,以实现最佳的内容压缩。定性和定量比较结果均表明,该方法在信息保存的准确性,完整性和充分性之间取得了很好的折衷。实验结果表明,我们的方法明显优于最新技术。

著录项

  • 来源
  • 作者单位

    National Laboratory of Pattern Recognition, Institute of Automations, Chinese Academy of Sciences, Beijing, China;

    Media Laboratory, Huawei Technologies Company, Ltd., Shenzhen, China;

    National Laboratory of Pattern Recognition, Institute of Automations, Chinese Academy of Sciences, Beijing, China;

    Microsoft Research Asia, Beijing, China;

    Global Big Data Technologies Centre, University of Technology at Sydney, Sydney, NSW, Australia;

    National Laboratory of Pattern Recognition, Institute of Automations, Chinese Academy of Sciences, Beijing, China;

    National Laboratory of Pattern Recognition, Institute of Automations, Chinese Academy of Sciences, Beijing, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Optimization; Distortion; Shape; Accuracy; Visualization; Fuses; Image generation;

    机译:优化;失真;形状;精度;可视化;保险丝;图像生成;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号