首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Accurate Image-Guided Stereo Matching With Efficient Matching Cost and Disparity Refinement
【24h】

Accurate Image-Guided Stereo Matching With Efficient Matching Cost and Disparity Refinement

机译:精确的图像引导立体声匹配以及高效的匹配成本和视差细化

获取原文
获取原文并翻译 | 示例

摘要

Stereo matching is a challenging problem, and high-accuracy stereo matching is still required in various computer vision applications, e.g., 3-D scanning, autonomous navigation, and 3-D reconstruction. Therefore, we present a novel image-guided stereo matching algorithm, which employs the efficient combined matching cost and multistep disparity refinement, to improve the accuracy of existing local stereo matching algorithms. Different from all the other methods, we introduce a guidance image for the whole algorithm. This filter-based guidance image is generated by extracting the enhanced information from the raw stereo image. The combined matching cost consists of the novel double-RGB gradient, the improved lightweight census transform, and the image color. This cost measurement is robust against image noise and textureless regions in computing the matching cost. Furthermore, a new systemic multistep refinement process, which includes outlier classification, four-direction propagation, leftmost propagation, and an exponential step filter, is proposed to remove the outliers in the raw disparity map. Experiments on the Middlebury benchmark demonstrate our algorithm's superior performance that it ranks first among the 158 submitted algorithms. Moreover, the proposed method is also robust on the 30 Middlebury data sets and the real-world Karlsruhe Institute of Technology and Toyota Technological Institute benchmark.
机译:立体匹配是一个具有挑战性的问题,并且在各种计算机视觉应用中仍需要高精度的立体匹配,例如3-D扫描,自主导航和3-D重建。因此,我们提出了一种新颖的图像引导立体匹配算法,该算法利用有效的组合匹配成本和多步视差细化来提高现有局部立体匹配算法的准确性。与所有其他方法不同,我们为整个算法引入了指导图像。通过从原始立体图像中提取增强信息来生成基于过滤器的引导图像。组合的匹配成本包括新颖的双RGB渐变,改进的轻量级普查变换和图像颜色。在计算匹配成本时,此成本测量可抵御图像噪声和无纹理区域。此外,提出了一种新的系统多步细化方法,该方法包括离群值分类,四向传播,最左传播和指数阶跃滤波器,以去除原始视差图中的离群值。在Middlebury基准测试中,实验证明了我们算法的优越性能,在提交的158种算法中排名第一。而且,该方法在30个Middlebury数据集以及真实的卡尔斯鲁厄技术学院和丰田技术学院基准测试中也很可靠。

著录项

  • 来源
  • 作者单位

    Key Laboratory of Wireless Sensor Network and Communication, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China;

    Key Laboratory of Wireless Sensor Network and Communication, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China;

    University of Science and Technology of China, Hefei, China;

    Key Laboratory of Wireless Sensor Network and Communication, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China;

    Department of Computer Science and Engineering, Shaoxing University, Shaoxing, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Transforms; Robustness; Image color analysis; Noise; Accuracy; Kernel; Image edge detection;

    机译:变换;稳健性;图像色彩分析;噪声;精度;核;图像边缘检测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号