首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >DCT Coefficient Distribution Modeling and Quality Dependency Analysis Based Frame-Level Bit Allocation for HEVC
【24h】

DCT Coefficient Distribution Modeling and Quality Dependency Analysis Based Frame-Level Bit Allocation for HEVC

机译:基于DCT系数分布模型和质量相关性分析的HEVC帧级比特分配

获取原文
获取原文并翻译 | 示例

摘要

A frame-level bit allocation optimization method is proposed to improve the rate–distortion performance for High Efficiency Video Coding. First, to avoid the demerits of the mixture Laplacian distribution model on complexity, a new synthesized Laplacian distribution (SynLD) model is proposed to describe the discrete cosine transform transformed coefficients based on Kullback–Leibler-divergence analysis. Second, quality dependencies among frames are investigated, and a linear relationship between quality dependency factor (QDF) and skip-mode percentage is proposed for QDF prediction. Based on the proposed SynLD model and QDF prediction method, a -domain-based frame-level bit allocation method is proposed. Experimental results show that when compared with the state-of-the-art pixel-based unified rate–quantization (URQ) model and –-model-based algorithms, 1.75- and 0.16-dB BD-peak signal-to-noise ratio (PSNR) gains can be achieved by the proposed bit allocation method, respectively. For quality consistency, the average PSNR standard deviation shows 0.16 and 0.02 dB lower than URQ and –-model-based algorithms, respectively. The proposed method also has a much more stable buffer control status and works well for scene change cases.
机译:提出了一种帧级比特分配优化方法,以提高高效视频编码的码率失真性能。首先,为避免混合拉普拉斯分布模型在复杂性上的缺点,提出了一种新的合成拉普拉斯分布(SynLD)模型,用于基于Kullback-Leibler-散度分析描述离散余弦变换变换系数。其次,研究了帧之间的质量相关性,并提出了质量相关因子(QDF)与跳过模式百分比之间的线性关系,以进行QDF预测。基于所提出的SynLD模型和QDF预测方法,提出了一种基于域的帧级比特分配方法。实验结果表明,与现有的基于像素的统一速率量化(URQ)模型和基于–模型的算法相比,BD-peak信噪比分别为1.75 dB和0.16-dB( PSNR)增益可以分别通过提出的比特分配方法来实现。为了保证质量一致性,平均PSNR标准偏差分别比URQ和基于–模型的算法低0.16和0.02 dB。所提出的方法还具有更加稳定的缓冲器控制状态,并且对于场景变化情况很好地工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号