首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >Fast CU Partitioning Algorithm for HEVC Using an Online-Learning-Based Bayesian Decision Rule
【24h】

Fast CU Partitioning Algorithm for HEVC Using an Online-Learning-Based Bayesian Decision Rule

机译:基于在线学习的贝叶斯决策规则的HEVC快速CU分区算法

获取原文
获取原文并翻译 | 示例

摘要

High Efficiency Video Coding (HEVC) is the state-of-the-art video coding standard. It adopts a hierarchical quad-tree-based coding unit (CU) partitioning structure that is flexible in various texture and motion characteristics of a video signal. However, the exhaustive partitioning process for finding optimal CU partitions requires a dramatic increase in computational complexity of the HEVC encoder compared with previous video coding standards. In this paper, a fast CU partitioning algorithm is proposed for HEVC encoder, which early on terminates the CU partitioning process based on the Bayesian decision rule using joint online and offline learning. An online learning method is first presented based on the minimum error Bayesian decision rule using a training picture selection method with scene change detection. Next, a joint online and offline learning method is presented, which additionally trains the loss of decision making of the proposed method based on the minimum risk Bayesian decision rule. The proposed method is implemented on an HEVC test software 15.0. Experimental results show that the proposed method reduces the computational complexity of HEVC encoder to 53.6% on an average with a 0.71% acceptable Bjøntegaard delta bitrate loss in random access configuration. For other configurations, 48.4%, 48.5%, and 54.2% encoding time saving are obtained on an average for low delay, low delay-P, and all intra-configurations, respectively.
机译:高效视频编码(HEVC)是最新的视频编码标准。它采用了基于分层四叉树的编码单元(CU)分区结构,该结构在视频信号的各种纹理和运动特性方面具有灵活性。但是,与先前的视频编码标准相比,用于找到最佳CU分区的详尽分区过程要求HEVC编码器的计算复杂度显着增加。本文提出了一种用于HEVC编码器的快速CU分割算法,该算法通过在线和离线联合学习基于贝叶斯决策规则终止了CU分割过程。首先提出一种基于最小误差贝叶斯决策规则的在线学习方法,该方法使用具有场景变化检测功能的训练图片选择方法。接下来,提出了一种在线和离线的联合学习方法,该方法还基于最小风险贝叶斯决策规则训练了该方法决策的损失。所提出的方法在HEVC测试软件15.0上实现。实验结果表明,该方法将HEVC编码器的计算复杂度平均降低至53.6%,在随机访问配置中可接受的Bjøntegaarddelta比特率损失为0.71%。对于其他配置,平均而言,低延迟,低延迟P和所有内部配置的平均编码时间节省分别为48.4%,48.5%和54.2%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号