首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >Histograms of Optical Flow Orientation and Magnitude and Entropy to Detect Anomalous Events in Videos
【24h】

Histograms of Optical Flow Orientation and Magnitude and Entropy to Detect Anomalous Events in Videos

机译:光学流方向,幅值和熵的直方图,用于检测视频中的异常事件

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an approach for detecting anomalous events in videos with crowds. The main goal is to recognize patterns that might lead to an anomalous event. An anomalous event might be characterized by the deviation from the normal or usual, but not necessarily in an undesirable manner, e.g., an anomalous event might just be different from normal but not a suspicious event from the surveillance point of view. One of the main challenges of detecting such events is the difficulty to create models due to their unpredictability and their dependency on the context of the scene. Based on these challenges, we present a model that uses general concepts, such as orientation, velocity, and entropy to capture anomalies. Using such a type of information, we can define models for different cases and environments. Assuming images captured from a single static camera, we propose a novel spatiotemporal feature descriptor, called histograms of optical flow orientation and magnitude and entropy, based on optical flow information. To determine the normality or abnormality of an event, the proposed model is composed of training and test steps. In the training, we learn the normal patterns. Then, during test, events are described and if they differ significantly from the normal patterns learned, they are considered as anomalous. The experimental results demonstrate that our model can handle different situations and is able to recognize anomalous events with success. We use the well-known UCSD and Subway data sets and introduce a new data set, namely, Badminton.
机译:本文提出了一种用于检测人群视频中异常事件的方法。主要目标是识别可能导致异常事件的模式。异常事件的特征可能在于与正常或正常情况的偏离,但不一定以不希望的方式出现,例如,从监视角度来看,异常事件可能只是与正常事件不同,而与可疑事件不同。检测此类事件的主要挑战之一是由于模型的不可预测性以及对场景上下文的依赖而难以创建模型。基于这些挑战,我们提出了一个使用一般概念(例如方向,速度和熵)来捕获异常的模型。使用此类信息,我们可以为不同情况和环境定义模型。假设从单个静态相机捕获的图像,我们基于光流信息提出了一种新颖的时空特征描述符,称为光流方向,大小和熵的直方图。为了确定事件的正常或异常,建议的模型由训练和测试步骤组成。在培训中,我们学习正常模式。然后,在测试过程中,将描述事件,如果事件与学习的正常模式明显不同,则将其视为异常。实验结果表明,我们的模型可以处理不同的情况,并且能够成功识别异常事件。我们使用著名的UCSD和Subway数据集,并引入了一个新数据集,即Badminton。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号