首页> 外文期刊>Image Processing, IET >Detecting abnormal events in traffic video surveillance using superorientation optical flow feature
【24h】

Detecting abnormal events in traffic video surveillance using superorientation optical flow feature

机译:使用超强光学流动特征检测交通视频监控中的异常事件

获取原文
获取原文并翻译 | 示例

摘要

Detection of abnormal events in the traffic scene is very challenging and is a significant problem in video surveillance. The authors proposed a novel scheme called super orientation optical flow (SOOF)-based clustering for identifying the abnormal activities. The key idea behind the proposed SOOF features is to efficiently reproduce the motion information of a moving vehicle with respect to superorientation motion descriptor within the sequence of the frame. Here, the authors adopt the mean absolute temporal difference to identify the anomalies by motion block (MB) selection and localisation. SOOF features obtained from MB are used as motion descriptor for both normal and abnormal events. Simple and efficient K-means clustering is used to study the normal motion flow during the training. The abnormal events are identified using the nearest-neighbour searching technique in the testing phase. The experimental outcome shows that the proposed work is effectively detecting anomalies and found to give results better than the state-of-the-art techniques.
机译:检测交通场景中的异常事件是非常具有挑战性的,并且是视频监控中的一个重要问题。作者提出了一种新颖的方案,称为超取向光学流量(SOOF)的基础集群,用于识别异常活动。所提出的SOOF特征背后的关键思想是在帧的序列中有效地再现移动车辆的运动信息的运动信息。在这里,作者采用平均绝对的时间差异来识别运动块(MB)选择和定位的异常。从MB获得的SOOF功能用作正常和异常事件的运动描述符。简单高效的K-Means聚类用于研究培训期间的正常运动流动。使用最近的邻近搜索技术在测试阶段中识别异常事件。实验结果表明,拟议的作品有效地检测异常,发现优于最先进的技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号