首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Image Retargeting Quality Assessment Based on Registration Confidence Measure and Noticeability-Based Pooling
【24h】

Image Retargeting Quality Assessment Based on Registration Confidence Measure and Noticeability-Based Pooling

机译:基于注册置信度测量和基于明显的汇集的图像重新定位质量评估

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, image retargeting approaches have been widely applied to adapt images of various resolutions to heterogenous display devices. To assess the quality of the retargeted images, image retargeting quality assessment (IRQA) has emerged as a critical problem in image quality assessment. In this paper, we address the IRQA problem with a newly proposed framework based on registration confidence measurement (RCM) and noticeability-based pooling (NBP). First, we define the RCM to evaluate the accuracy of image registration, which aligns scenes between the original and retargeted images. We then integrate the proposed RCM with the computed local fidelity of each image block to alleviate the negative influence of inaccurate registration on fidelity measurements. Meanwhile, we present a visual attention fusion (VAF) framework to enhance faces and lines in the saliency map, which are observed to be highly sensitive in the human visual system (HVS). Finally, we propose the NBP strategy, which aggregates the local fidelity of each image block into the overall quality of the retargeted image. Specifically, the NBP strategy sets larger quality ranges for the regions where the visual distortions are more accessible to HVS to reflect the easy noticeability of these regions. Experimental results on the MIT RetargetMe and CUHK datasets demonstrate that the proposed IRQA metric based on RCM and NBP outperforms the state-of-the-art IRQA metrics.
机译:如今,图像重试方法已被广泛应用于使各种分辨率的图像适应异构显示装置。为了评估零斑图像的质量,图像重定向质量评估(IRQA)已成为图像质量评估中的关键问题。在本文中,我们通过基于注册置信度测量(RCM)和基于明显的汇集(NBP)的新提出的框架来解决IRQA问题。首先,我们定义RCM以评估图像配准的准确性,该准确性对准原始图像和重新设置的图像之间的场景。然后,我们将提议的RCM与每个图像块的计算本地保真度集成,以减轻不准确的登记对保真度测量的负面影响。同时,我们介绍了一种可视注意融合(VAF)框架,以增强显着图中的面部和线,观察到在人类视觉系统(HVS)中是高度敏感的。最后,我们提出了NBP策略,它将每个图像块的本地保真度聚集到零件图像的整体质量中。具体地,NBP策略为HVS更易于可访问的区域为较大的区域设定较大的质量范围以反映这些区域的易于高分性。 MIT RetargetMe和CuHK数据集上的实验结果表明,基于RCM和NBP的提议IRQA度量优于最先进的IRQA指标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号