首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >An Efficient Sampling Algorithm With a K-NN Expanding Operator for Depth Data Acquisition in a LiDAR System
【24h】

An Efficient Sampling Algorithm With a K-NN Expanding Operator for Depth Data Acquisition in a LiDAR System

机译:一种高效采样算法,具有K-Nn扩展操作员在LIDAR系统中进行深度数据采集

获取原文
获取原文并翻译 | 示例

摘要

The spatial resolution of a depth-acquisition device, such as a Light Detection and Ranging (LiDAR) sensor, is limited because of the slow acquisition. To accurately reconstruct a depth image from limited spatial resolution, a two-stage sampling process has been widely used. However, two-stage sampling uses an irregular sampling pattern for the sampling operation, which requires complex computation for reconstruction and additional memory space for storage. A mathematical formulation of a LiDAR system demonstrates that two-stage sampling does not satisfy its timing constraint for practical use. To overcome the drawbacks of two-stage sampling, this paper proposes a new sampling method that reduces the computational complexity and memory requirements by generating the optimal representatives of a sampling pattern in down-sample data. A sampling pattern can be derived from a k-NN expanding operation from the downsampled representatives. The proposed algorithm is designed to preserve the object boundary by restricting the expansion-operation only to the object boundary or complex texture. In addition, the proposed algorithm runs in linear-time complexity and reduces the memory requirements using a down-sampling ratio. The experimental results demonstrate that the proposed sampling outperforms grid sampling by at most 7.92 dB. Consequently, the proposed sampling achieves reconstructed quality similar to that of optimal sampling, while substantially reducing the computation time and memory requirements.
机译:由于慢获取,诸如光检测和测距(LIDAR)传感器的深度采集装置的空间分辨率是有限的。为了精确地重建从空间分辨率有限的深度图像,已广泛使用两级采样过程。然而,两级采样使用用于采样操作的不规则采样模式,这需要复杂的重建和额外的存储空间来存储。 LIDAR系统的数学制剂表明,两级采样不满足其实际使用的时序约束。为了克服两级采样的缺点,本文提出了一种新的采样方法,可以通过在下样本数据中生成采样模式的最佳代表来降低计算复杂性和内存要求。采样模式可以从下采样的代表从k-nn扩展操作导出。所提出的算法旨在通过仅将扩展操作限制为对象边界或复杂纹理来保护对象边界。此外,所提出的算法以线性时间复杂度运行,并使用下采样比率降低存储器要求。实验结果表明,所提出的采样优于最多7.92 dB的栅格取样。因此,所提出的抽样实现了与最佳采样类似的重建质量,同时大大降低了计算时间和存储器要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号