首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >Color Transferred Convolutional Neural Networks for Image Dehazing
【24h】

Color Transferred Convolutional Neural Networks for Image Dehazing

机译:颜色转移卷积神经网络的图像脱水

获取原文
获取原文并翻译 | 示例

摘要

Image dehazing is a crucial image processing step for outdoor vision systems. However, images recovered through conventional image dehazing methods that use either haze-relevant priors or heuristic cues to estimate transmission maps may not lead to sufficiently accurate haze removal from single images. The most commonly observed effects are darkened and brightened artifacts on some areas of the recovered images, which cause considerable loss of fidelity, brightness, and sharpness. This paper develops a variational image dehazing method on the basis of a color-transfer image dehazing model that is superior to conventional image dehazing methods. By creating a color-transfer image dehazing model to remove haze obscuration and acquire information regarding the coefficients of the model by using the devised convolutional neural network-based deep framework as a supervised learning strategy, an image fidelity, brightness, and sharpness can be effectively restored. The experimental results verify through quantitative and qualitative evaluations of either synthesized or real haze images, and the proposed method outperforms existing single image dehazing methods.
机译:图像去吸附是户外视觉系统的重要图像处理步骤。然而,通过传统的图像去吸收方法恢复的图像,该方法使用雾霾相关的前沿或启发式线索来估计传输映射可能不会导致从单个图像中的充分精确的雾度去除。最常见的效果在恢复图像的某些区域上变暗并亮起了伪影,这导致富有保真度,亮度和清晰度的相当大损失。本文基于常规图像脱水方法的颜色转印图像去吸收模型开发变分图像去吸附方法。通过创建颜色传输图像去吸模模型来消除遮蔽模型,通过使用设计的基于卷积神经网络的深度框架作为监督学习策略,图像保真度,亮度和清晰度来获取有关模型系数的信息恢复。实验结果通过合成或真实雾霾图像的定量和定性评估来验证,并且所提出的方法优于现有的单图像去吸附方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号