首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Beyond Scalar Neuron: Adopting Vector-Neuron Capsules for Long-Term Person Re-Identification
【24h】

Beyond Scalar Neuron: Adopting Vector-Neuron Capsules for Long-Term Person Re-Identification

机译:超越标量神经元:采用载体神经元胶囊,用于长期人重新识别

获取原文
获取原文并翻译 | 示例

摘要

Current person re-identification (re-ID) works mainly focus on the short-term scenario where a person is less likely to change clothes. However, in the long-term re-ID scenario, a person has a great chance to change clothes. A sophisticated re-ID system should take such changes into account. To facilitate the study of long-term re-ID, this paper introduces a large-scale re-ID dataset called "Celeb-reID" to the community. Unlike previous datasets, the same person can change clothes in the proposed Celeb-reID dataset. Images of Celeb-reID are acquired from the Internet using street snap-shots of celebrities. There is a total of 1,052 IDs with 34,186 images making Celeb-reID being the largest long-term re-ID dataset so far. To tackle the challenge of cloth changes, we propose to use vector-neuron (VN) capsules instead of the traditional scalar neurons (SN) to design our network. Compared with SN, one extra-dimensional information in VN can perceive cloth changes of the same person. We introduce a well-designed ReIDCaps network and integrate capsules to deal with the person re-ID task. Soft Embedding Attention (SEA) and Feature Sparse Representation (FSR) mechanisms are adopted in our network for performance boosting. Experiments are conducted on the proposed long-term re-ID dataset and two common short-term re-ID datasets. Comprehensive analyses are given to demonstrate the challenge exposed in our datasets. Experimental results show that our ReIDCaps can outperform existing state-of-the-art methods by a large margin in the long-term scenario. The new dataset and code will be released to facilitate future researches.
机译:当前人员重新识别(RE-ID)主要关注短期情景,其中一个人不太可能改变衣服。但是,在长期重新上的情景中,一个人有很大的机会改变衣服。复杂的RE-ID系统应考虑此类更改。为了促进长期重新ID的研究,本文介绍了一个名为“Celeb-Reid”的大型重新标识数据集。与以前的数据集不同,同一个人可以在提议的Celeb-Reid数据集中更改衣服。 Celeb-Reid的图像是使用互联网获取的名人的街头拍摄。总共有1,052个ID,其中34,186张图片使Celeb-Reid成为到目前为止是最大的长期重新识别数据集。为了解决布的挑战,我们建议使用载体神经元(VN)胶囊而不是传统的标量神经元(SN)来设计我们的网络。与SN相比,VN中的一个立体信息可以感知同一个人的布。我们介绍了一款精心设计的Reidcaps网络,并集成了胶囊来处理Re-ID任务。我们的网络采用软嵌入注意力(SEA)和特征稀疏表示(FSR)机制以进行性能提升。实验在提出的长期重新ID数据集和两个常见的短期重新ID数据集上进行。综合分析展示了我们数据集中暴露的挑战。实验结果表明,我们的Reidcaps可以在长期情景中通过大幅度优于现有的最先进方法。新数据集和代码将被释放以促进未来的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号