首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Aligned Dynamic-Preserving Embedding for Zero-Shot Action Recognition
【24h】

Aligned Dynamic-Preserving Embedding for Zero-Shot Action Recognition

机译:对零射击动作识别的对齐动态保留嵌入

获取原文
获取原文并翻译 | 示例

摘要

Zero-shot learning (ZSL) typically explores a shared semantic space in order to recognize novel categories in the absence of any labeled training data. However, the traditional ZSL methods always suffer from serious domain shift problem in human action recognition. This is because: 1) existing ZSL methods are specifically designed for object recognition from static images, which do not capture the temporal dynamics of video sequences, and poor performances are always generated if those methods are directly applied to zero-shot action recognition; 2) these methods always blindly project the target data into a shared space using a semantic mapping obtained by the source data without any adaptation, in which the underlying structures of target data are ignored; and 3) severe inter-class variations exist in various action categories. The traditional ZSL methods do not take relationships across different categories into consideration. In this paper, we propose a novel aligned dynamic-preserving embedding (ADPE) model for zero-shot action recognition in a transductive setting. In our model, an adaptive embedding of target videos is learned, exploring the distributions of both the source and target data. An aligned regularization is further proposed to couple the centers of target semantic representations with their corresponding label prototypes in order to preserve the relationships across different categories. Most significantly, during our embedding, the temporal dynamics of video sequences are simultaneously preserved via exploiting the temporal consistency of video sequences and capturing the temporal evolution of successive segments of actions. Our model can effectively overcome the domain shift problem in zero-shot action recognition. The experiments on Olympic sports, HMDB51, and UCF101 datasets demonstrate the effectiveness of our model.
机译:零拍学习(ZSL)通常探索共享语义空间,以便在没有任何标记的训练数据的情况下识别新型类别。但是,传统的ZSL方法总是在人类行动识别中遭受严重的域移位问题。这是因为:1)现有的ZSL方法专门用于从静态图像的对象识别,其不会捕获视频序列的时间动态,并且如果这些方法直接应用于零射击动作识别,则始终生成差的性能; 2)这些方法始终使用源数据获得的语义映射盲目地将目标数据突出到共享空间中,没有任何适应,其中目标数据的基础结构被忽略; 3)各种行动类别中存在严重的阶级变异。传统的ZSL方法不考虑不同类别的关系。在本文中,我们提出了一种新的对齐动态保留嵌入(ADPE)模型,用于在转换设置中为零动作识别。在我们的模型中,学习了目标视频的自适应嵌入,探索了源数据和目标数据的分布。进一步提出了一种对准的正则化以将目标语义表示的中心与其相应的标签原型耦合,以便保留跨不同类别的关系。最重要的是,在我们的嵌入期间,通过利用视频序列的时间一致性并捕获连续段的行动段的时间演变同时保留视频序列的时间动态。我们的模型可以有效地克服零击动作识识别中的域移位问题。奥林匹克运动,HMDB51和UCF101数据集的实验证明了我们模型的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号