首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Heterogeneous Association Graph Fusion for Target Association in Multiple Object Tracking
【24h】

Heterogeneous Association Graph Fusion for Target Association in Multiple Object Tracking

机译:多目标跟踪中目标关联的异构关联图融合

获取原文
获取原文并翻译 | 示例

摘要

Tracking-by-detection is one of the most popular approaches to tracking multiple objects in which the detector plays an important role. Sometimes, detector failures caused by occlusions or various poses are unavoidable and lead to tracking failure. To cope with this problem, we construct a heterogeneous association graph that fuses high-level detections and low-level image evidence for target association. Compared with other methods using low-level information, our proposed heterogeneous association fusion (HAF) tracker is less sensitive to particular parameters and is easier to extend and implement. We use the fused association graph to build track trees for HAF and solve them by the multiple hypotheses tracking framework, which has been proven to be competitive by introducing efficient pruning strategies. In addition, the novel idea of adaptive weights is proposed to analyze the contribution between motion and appearance. We also evaluated our results on the MOT challenge benchmarks and achieved state-of-the-art results on the MOT Challenge 2017.
机译:通过检测跟踪是跟踪多个对象的最受欢迎的方法之一,其中检测器起着重要的作用。有时,由于闭塞或各种姿势引起的检测器故障是不可避免的,并会导致跟踪故障。为了解决这个问题,我们构建了一个异构关联图,该图将高级检测和低级图像证据融合为目标关联。与其他使用低层信息的方法相比,我们提出的异构关联融合(HAF)跟踪器对特定参数的敏感度较低,并且更易于扩展和实现。我们使用融合关联图构建HAF的跟踪树,并通过多种假设跟踪框架对其进行求解,通过引入有效的修剪策略已证明该框架具有竞争力。此外,提出了自适应权重的新思想来分析运动与外观之间的关系。我们还在MOT挑战基准上评估了我们的结果,并在MOT Challenge 2017上获得了最新的成果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号