首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Normalized Non-Negative Sparse Encoder for Fast Image Representation
【24h】

Normalized Non-Negative Sparse Encoder for Fast Image Representation

机译:用于快速图像表示的归一化非负稀疏编码器

获取原文
获取原文并翻译 | 示例

摘要

Image representation based on sparse coding generalizes the bag of words model. Although it reduces the reconstruction error for local features to achieve the state-of-the-art image classification performance, the large computational cost hinders the application of sparse coding-based image features. In this paper, we propose approximating a sparse code using the output of a simple neural network. The resulting parameter learning model for the neural network automatically incorporates non-negative and shift-invariant constraints, leading to an efficient normalized non-negative sparse coding ((NSC)-S-3) sparse encoder. Without the use of the traditional iterative process to solve the sparse coding objective, the sparse encoder directly "converts" each local feature into a sparse code. We also introduce a method for training the encoder based on the auto-encoder method. In addition, we formally propose the corresponding sparse coding scheme called (NSC)-S-3, which enforces both the non-negative constraint and the shift-invariant constraint in addition to the traditional sparse coding criteria. As demonstrated by several experiments, the obtained (NSC)-S-3 encoder requires only 3%-10% of the processing time for image feature extraction compared with the standard sparse coding scheme. At the same time, the features extracted using the exact solutions of the (NSC)-S-3 coding scheme and the (NSC)-S-3 encoder offer superior image classification accuracy compared to the accuracy of many existing sparse coding-based representations.
机译:基于稀疏编码的图像表示推广了词袋模型。尽管它减少了局部特征的重建误差,以实现最新的图像分类性能,但庞大的计算成本阻碍了基于稀疏编码的图像特征的应用。在本文中,我们建议使用简单神经网络的输出来近似稀疏代码。用于神经网络的结果参数学习模型自动合并非负和平移不变约束,从而产生有效的归一化非负稀疏编码((NSC)-S-3)稀疏编码器。在不使用传统的迭代过程来解决稀疏编码目标的情况下,稀疏编码器直接将每个局部特征“转换”为稀疏编码。我们还介绍了一种基于自动编码器方法的编码器训练方法。此外,我们正式提出了一种称为(NSC)-S-3的相应稀疏编码方案,该方案除了传统的稀疏编码标准外,还实施了非负约束和不变移约束。如几个实验所示,与标准稀疏编码方案相比,所获得的(NSC)-S-3编码器仅需要3%-10%的图像特征提取处理时间。同时,与许多现有的基于稀疏编码的表示形式的精度相比,使用(NSC)-S-3编码方案和(NSC)-S-3编码器的精确解决方案提取的特征可提供卓越的图像分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号