首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Maximum Correntropy Criterion-Based Sparse Subspace Learning for Unsupervised Feature Selection
【24h】

Maximum Correntropy Criterion-Based Sparse Subspace Learning for Unsupervised Feature Selection

机译:基于最大熵准则的稀疏子空间学习的无监督特征选择

获取原文
获取原文并翻译 | 示例

摘要

High-dimensional data contain not only redundancy but also noises produced by the sensors. These noises are usually non-Gaussian distributed. The metrics based on Euclidean distance are not suitable for these situations in general. In order to select the useful features and combat the adverse effects of the noises simultaneously, a robust sparse subspace learning method in unsupervised scenario is proposed in this paper based on the maximum correntropy criterion that shows strong robustness against outliers. Furthermore, an iterative strategy based on half quadratic and an accelerated block coordinate update is proposed. The convergence analysis of the proposed method is also carried out to ensure the convergence to a reliable solution. Extensive experiments are conducted on real-world data sets to show that the new method can filter out the outliers and outperform several state-of-the-art unsupervised feature selection methods.
机译:高维数据不仅包含冗余,还包含传感器产生的噪声。这些噪声通常是非高斯分布的。通常,基于欧式距离的度量标准不适用于这些情况。为了选择有用的特征并同时消除噪声的不利影响,本文提出了一种基于最大熵准则的鲁棒稀疏子空间学习方法,该准则对异常值具有较强的鲁棒性。此外,提出了一种基于半二次和加速块坐标更新的迭代策略。还对提出的方法进行了收敛性分析,以确保收敛到可靠的解决方案。在现实世界的数据集上进行了广泛的实验,结果表明,该新方法可以滤除异常值,并且优于几种最新的无监督特征选择方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号