首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Estimating Depth From Monocular Images as Classification Using Deep Fully Convolutional Residual Networks
【24h】

Estimating Depth From Monocular Images as Classification Using Deep Fully Convolutional Residual Networks

机译:使用深度完全卷积残差网络将单眼图像的深度估计为分类

获取原文
获取原文并翻译 | 示例

摘要

Depth estimation from single monocular images is a key component in scene understanding. Most existing algorithms formulate depth estimation as a regression problem due to the continuous property of depths. However, the depth value of input data can hardly be regressed exactly to the ground-truth value. In this paper, we propose to formulate depth estimation as a pixelwise classification task. Specifically, we first discretize the continuous ground-truth depths into several bins and label the bins according to their depth ranges. Then, we solve the depth estimation problem as classification by training a fully convolutional deep residual network. Compared with estimating the exact depth of a single point, it is easier to estimate its depth range. More importantly, by performing depth classification instead of regression, we can easily obtain the confidence of a depth prediction in the form of probability distribution. With this confidence, we can apply an information gain loss to make use of the predictions that are close to ground-truth during training, as well as fully-connected conditional random fields for post-processing to further improve the performance. We test our proposed method on both indoor and outdoor benchmark RGB-Depth datasets and achieve state-of-the-art performance.
机译:单幅单眼图像的深度估计是场景理解中的关键组成部分。由于深度的连续性质,大多数现有算法将深度估计公式化为回归问题。但是,输入数据的深度值很难准确地回归到真实值。在本文中,我们提出将深度估计公式化为像素分类任务。具体来说,我们首先将连续的地面真实深度离散为几个容器,然后根据它们的深度范围对容器进行标记。然后,我们通过训练一个完全卷积的深度残差网络来解决深度估计问题。与估计单个点的确切深度相比,估计其深度范围更容易。更重要的是,通过执行深度分类而不是回归,我们可以轻松地以概率分布的形式获得深度预测的置信度。有了这种信心,我们可以运用信息增益损失来利用训练期间接近地面真相的预测,以及完全连接的条件随机字段进行后处理,以进一步提高性能。我们在室内和室外基准RGB深度数据集上测试了我们提出的方法,并获得了最新的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号