首页> 外文期刊>IEEE Transactions on Circuits and Systems. II, Express Briefs >A constrained anti-Hebbian learning algorithm for totalleast-squares estimation with applications to adaptive FIR and IIRfiltering
【24h】

A constrained anti-Hebbian learning algorithm for totalleast-squares estimation with applications to adaptive FIR and IIRfiltering

机译:一种用于全最小二乘估计的约束反赫比学习算法及其在自适应FIR和IIR滤波中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new Hebbian-type learning algorithm for the totalnleast-squares parameter estimation is presented. The algorithm isnderived from the classical Hebbian rule. An asymptotic analysis isncarried out to show that the algorithm allows the weight vector of anlinear neuron unit to converge to the eigenvector associated with thensmallest eigenvalue of the correlation matrix of the input signal. Whennthe algorithm is applied to solve parameter estimation problems, thenconverged weights directly yield the total least-squares solution. Sincenthe process of obtaining the estimate is optimal in the totalnleast-squares sense, its noise rejection capability is superior to thosenof the least-squares-based algorithms. It is shown that thenimplementations of the proposed algorithm have the simplicity of thosenof the LMS algorithm. The applicability and performance of the algorithmnare demonstrated through computer simulations of adaptive FIR and IIRnparameter estimation problems
机译:本文提出了一种新的Hebbian型学习算法,用于估计最小二乘参数。该算法源自经典的Hebbian规则。进行了渐近分析,表明该算法允许非线性神经元单位的权向量收敛到与输入信号相关矩阵的最小特征值相关的特征向量。当将该算法用于解决参数估计问题时,收敛的权重直接产生总的最小二乘解。由于获得估计的过程在最小二乘意义上是最优的,因此其噪声抑制能力优于基于最小二乘的算法。结果表明,所提算法的实现具有LMS算法的简单性。通过计算机模拟自适应FIR和IIRn参数估计问题证明了该算法的适用性和性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号