首页> 外文期刊>IEEE Transactions on Circuits and Systems. II, Express Briefs >2-D fast Kalman algorithms for adaptive parameter estimation ofnonhomogeneous Gaussian Markov random field model
【24h】

2-D fast Kalman algorithms for adaptive parameter estimation ofnonhomogeneous Gaussian Markov random field model

机译:二维快速卡尔曼算法用于非均匀高斯马尔可夫随机场模型的自适应参数估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a two-dimensional (2-D) nonhomogeneous GaussiannMarkov Random Field (GMRF) model is presented and the problem ofnadaptive parameter estimation for this model is addressed. Two 2-D fastnKalman algorithms are proposed as extensions of the 1-D fast Kalmannalgorithm, which utilize the shift-invariant and near-to-Toeplitznproperties of the coefficient matrix of the normal equation resultingnfrom the least squares (LS) criterion. In the first algorithm thenspace-varying model parameters are updated by sliding a data window withna constant size. By first shifting the data window from left to rightnand then from top to bottom, the spatial adaptive algorithm covers anwhole image. In the second algorithm the model parameters are updated bynabsorbing new pixel data or deleting old pixel data. The computationalncomplexities of the proposed two algorithms are O(Lm2)+O(Ln2m) MADPR (Multiplications And Divisions Per Recursion) acidnO(m3/2) MADPR respectively, compared with O(L2mn2)+O(m3) and O(m3) needed in thencorresponding direct least squares method, m and L being respectivelynthe total number of model parameters to be estimated and the size ofndata window. For computer simulation two sample images which obey twonsets of known parameters are first synthesized, and are then merged,nresulting in a non-homogeneous image. It is shown that the 2-D fastnKalman algorithms developed in the paper reduce the computationalncomplexity significantly and can track the model parameters very well.nThe estimated model parameters are as same as those obtained by usingndirect LS method. The algorithms derived in this paper can be used innmany applications where an image is considered as a nonstationary one
机译:本文提出了二维(2-D)非均匀高斯马氏随机场(GMRF)模型,并解决了该模型的自适应参数估计问题。提出了两种2-D fastnKalman算法作为1-D快速Kalmann算法的扩展,它们利用了由最小二乘(LS)准则得出的正则方程系数矩阵的不变性和接近Toeplitzn性质。在第一种算法中,然后通过滑动具有恒定大小的数据窗口来更新时变模型参数。通过首先从左到右然后从上到下移动数据窗口,空间自适应算法可以覆盖整个图像。在第二种算法中,通过吸收新像素数据或删除旧像素数据来更新模型参数。所提出的两种算法的计算复杂度分别为O(Lm2)+ O(Ln2m)MADPR(每次递归乘法和除法)acidnO(m3 / 2)MADPR,而O(L2mn2)+ O(m3)和O(m3)则相应的直接最小二乘法需要满足,m和L分别为要估计的模型参数总数和数据窗口的大小。为了进行计算机模拟,首先合成两个服从已知参数的两个样本图像,然后将其合并,从而得到非均匀图像。结果表明,本文开发的二维fastnKalman算法可以显着降低计算复杂度,并且可以很好地跟踪模型参数。本文推导的算法可用于任何将图像视为非平稳图像的应用中

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号