首页> 外文期刊>IEEE Transactions on Circuits and Systems. II, Express Briefs >Sparsely interconnected neural networks for associative memorieswith applications to cellular neural networks
【24h】

Sparsely interconnected neural networks for associative memorieswith applications to cellular neural networks

机译:用于关联记忆的稀疏互连神经网络及其在细胞神经网络中的应用

获取原文
获取原文并翻译 | 示例

摘要

We first present results for the analysis and synthesis of a classnof neural networks without any restrictions on the interconnectingnstructure. The class of neural networks which we consider have thenstructure of analog Hopfield nets and utilize saturation functions tonmodel the neurons. Our analysis results make it possible to locate in ansystematic manner all equilibrium points of the neural network and tondetermine the stability properties of the equilibrium points. Thensynthesis procedure makes it possible to design in a systematic mannernneural networks (for associative memories) which store all desirednmemory patterns as reachable memory vectors. We generalize the abovenresults to develop a design procedure for neural networks with sparsencoefficient matrices. Our results guarantee that the synthesized neuralnnetworks have predetermined sparse interconnection structures and storenany set of desired memory patterns as reachable memory vectors. We shownthat a sufficient condition for the existence of a sparse neural networkndesign is self feedback for every neuron in the network. We apply ournsynthesis procedure to the design of cellular neural networks fornassociative memories. Our design procedure for neural networks withnsparse interconnecting structure can take into account various problemsnencountered in VLSI realizations of such networks. For example, ournprocedure can be used to design neural networks with few or without anynline-crossings resulting from the network interconnections. Severalnspecific examples are included to demonstrate the applicability of thenmethodology advanced herein
机译:我们首先提出分析和综合一类神经网络的结果,而对互连结构没有任何限制。我们认为的神经网络具有模拟Hopfield网络的结构,并利用饱和函数对神经元进行建模。我们的分析结果使得有可能以系统的方式定位神经网络的所有平衡点,并确定平衡点的稳定性。然后,合成过程使得有可能以系统的方式设计神经网络(用于关联存储器),该神经网络将所有期望的记忆模式存储为可到达的存储器向量。我们将上述结果归纳起来,以开发具有稀疏系数矩阵的神经网络的设计程序。我们的结果保证了合成的神经网络具有预定的稀疏互连结构,并存储了所需的存储模式作为可访问的存储向量。我们证明了稀疏神经网络设计存在的充分条件是网络中每个神经元的自我反馈。我们将我们的合成程序应用于细胞联想记忆的神经网络的设计。我们对于具有稀疏互连结构的神经网络的设计过程可以考虑到此类网络的VLSI实现中遇到的各种问题。例如,我们的过程可用于设计很少或没有因网络互连而导致的任何交叉交叉的神经网络。包括几个特定的​​例子,以证明本文先进的方法论的适用性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号