首页> 外文期刊>IEEE Transactions on Circuits and Systems. II, Express Briefs >Lattice algorithms for recursive least squares adaptivesecond-order Volterra filtering
【24h】

Lattice algorithms for recursive least squares adaptivesecond-order Volterra filtering

机译:递归最小二乘自适应二阶Volterra滤波的格算法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents two computationally efficient recursivenleast-squares (RLS) lattice algorithms for adaptive nonlinear filteringnbased on a truncated second-order Volterra system model. The latticenformulation transforms the nonlinear filtering problem into annequivalent multichannel, linear filtering problem and then generalizesnthe lattice solution to the nonlinear filtering problem. One of thenalgorithms is a direct extension of the conventional RLS latticenadaptive linear filtering algorithm to the nonlinear case. The othernalgorithm is based on the QR decomposition of the prediction errorncovariance matrices using orthogonal transformations. Severalnexperiments demonstrating and comparing the properties of the twonalgorithms in finite and “infinite” precision environmentsnare included in the paper. The results indicate that both the algorithmsnretain the fast convergence behavior of the RLS Volterra filters and arennumerically stable
机译:本文提出了一种基于截断的二阶Volterra系统模型的自适应非线性滤波的两种计算有效的递归最小二乘(RLS)格算法。晶格公式将非线性滤波问题转换成等效的多通道线性滤波问题,然后将晶格解推广到非线性滤波问题。算法之一是将常规RLS晶格自适应线性滤波算法直接扩展到非线性情况。另一个算法基于使用正交变换的预测误差协方差矩阵的QR分解。本文中还包括一些实验,它们证明并比较了两种算法在有限和“无限”精度环境中的性质。结果表明,两种算法都保持了RLS Volterra滤波器的快速收敛性能,并且数值稳定

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号