首页> 外文期刊>IEEE Transactions on Circuits and Systems. II, Express Briefs >A computationally efficient technique for designing frequencysampling filters
【24h】

A computationally efficient technique for designing frequencysampling filters

机译:一种计算有效的技术,用于设计频率采样滤波器

获取原文
获取原文并翻译 | 示例

摘要

In a recent paper, a technique for designing linear phasenfrequency sampling filters was proposed that approximates a desirednfrequency response by minimizing the mean square error over thenstopbands subject to constraints on the filters amplitude response. Thisntechnique results in a large number of simultaneous linear equations thensolution of which determines the filter's impulse response. The filter'snfrequency samples which are used to implement the filter are thenndetermined by computing the discrete Fourier transform of this impulsenresponse. In this brief, a modification of this technique is developed.nThis modified technique also approximates a desired frequency responsenby minimizing the mean square error over the stopbands subject tonconstraints on the filter's amplitude response. Additionally, however,nit allows passbands to be approximated by a weighted mean square error.nThis modified technique results in a set of simultaneous linearnequations, the solution of which directly determines the filter'snnonzero frequency samples. Because the number of nonzero frequencynsamples is typically much less than the number of impulse responsenelements, this technique requires a significantly smaller number ofnsimultaneous linear equations than the other technique
机译:在最近的论文中,提出了一种用于设计线性相位频率采样滤波器的技术,该技术通过最小化受滤波器幅度响应约束的阻带上的均方误差来近似所需的频率响应。该技术产生大量联立线性方程,然后通过求解该方程来确定滤波器的脉冲响应。然后,通过计算该冲激响应的离散傅里叶变换,确定用于实现滤波器的滤波器的n个频率采样。在本简介中,对这种技术进行了改进。n该改进的技术还通过最小化受带宽限制的阻带上的均方误差来滤除滤波器的幅度响应,从而近似了所需的频率响应。但是,此外,它还允许通带通过加权均方误差来近似。n这种经过改进的技术可产生一组同时线性方程组,其解直接确定滤波器的非零频率采样。由于非零频率采样的数量通常比冲激响应元素的数量少得多,因此该技术所需的同时线性方程组的数量比其他技术要少得多

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号