首页> 外文期刊>IEEE Transactions on Circuits and Systems. II, Express Briefs >Weighted least-squares method for designing variable fractionaldelay 2-D FIR digital filters
【24h】

Weighted least-squares method for designing variable fractionaldelay 2-D FIR digital filters

机译:设计可变分数延迟二维FIR数字滤波器的加权最小二乘方法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a closed-form weighted least-squares solutionnfor designing variable two-dimensional (2-D) finite-impulse responsen(FIR) digital filters with continuously variable 2-D fractional delaynresponses. First, the coefficients of the variable 2-D transfer functionnare represented by using the polynomials of a pair of fractional delaysn(p1, p2). Then the weighted squared-error functionnof the variable 2-D frequency response is derived without sampling thentwo frequencies (Ω1, Ω2) and twonfractional delays (p1, p2), which leads to ansignificant reduction in computational complexity. With the assumptionnthat the overall weighting function is separable and stepwise, thendesign problem is reduced to the minimization of the weightednsquared-error function. Based on the error function, the closed-formnoptimal solutions for the coefficient matrices of the variable 2-Dntransfer function can be determined through solving a pair of matrixnequations. In addition, Cholesky decomposition is applied to the finalnclosed-form expressions in order to avoid some numerical instabilitynproblem. An example is given to illustrate the effectiveness of thenproposed design method
机译:本文提出了一种封闭形式的加权最小二乘解n,用于设计具有连续可变的二维分数延迟响应的二维(2-D)有限脉冲响应n(FIR)数字滤波器。首先,通过使用一对分数延迟n(p1,p2)的多项式来表示可变2-D传递函数的系数。然后,在不采样然后采样两个频率(Ω1,Ω2)和两个分数延迟(p1,p2)的情况下,得出可变二维频率响应的加权平方误差函数,从而显着降低了计算复杂度。假设总体加权函数是可分离的和逐步的,则设计问题可以减少到加权平方误差函数的最小化。基于误差函数,可以通过求解一对矩阵方程来确定变量2-Dn传递函数的系数矩阵的闭式最优解。另外,将Cholesky分解应用于最终闭式表达式,以避免某些数值不稳定性问题。举例说明了所提出的设计方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号