首页> 外文期刊>Circuits and Systems II: Express Briefs, IEEE Transactions on >An FPGA-Based Energy-Efficient Reconfigurable Convolutional Neural Network Accelerator for Object Recognition Applications
【24h】

An FPGA-Based Energy-Efficient Reconfigurable Convolutional Neural Network Accelerator for Object Recognition Applications

机译:基于FPGA的节能可重新配置卷积神经网络加速器,用于对象识别应用

获取原文
获取原文并翻译 | 示例

摘要

The computational efficiency is the prime concern of a computation-intensive deep convolutional neural network (CNN). In this Brief, we report an FPGA-based computation-efficient reconfigurable CNN accelerator. It innovates in the utilization of a kernel partition technique to substantially reduce the repeated access to the input feature maps and the kernels. As a result, it balances the ability for parallel computing while consuming less system power. Experimental results prove that the proposed CNN accelerator achieves a peak throughput of 220.0 GOP/s with an energy efficiency of 22.9 GOPs/W at 151.4 frames/s for the AlexNet. It is also reconfigurable to process VGG-16 befitting complex object recognition.
机译:计算效率是计算密集型深度卷积神经网络(CNN)的主要问题。 在此简介中,我们报告了基于FPGA的计算有效的可重新配置CNN加速器。 它在利用内核分区技术的利用中创新,基本上减少了对输入特征映射和内核的重复访问。 结果,它平衡了并行计算的能力,同时消耗较少的系统功率。 实验结果证明,所提出的CNN加速器实现220.0 GOP / s的峰值吞吐量,其能量效率为22.9帧/秒,用于亚历纳网。 它还可以重新配置,以处理VGG-16的复杂对象识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号