首页> 外文期刊>Circuits and Systems II: Express Briefs, IEEE Transactions on >A Normalized Least Mean Squares Algorithm With a Step-Size Scaler Against Impulsive Measurement Noise
【24h】

A Normalized Least Mean Squares Algorithm With a Step-Size Scaler Against Impulsive Measurement Noise

机译:带有步长缩放器的抗脉冲测量噪声的归一化最小均方算法

获取原文
获取原文并翻译 | 示例

摘要

This brief introduces the concept of a step-size scaler by investigating and modifying the $tanh$ cost function for adaptive filtering with impulsive measurement noise. The step-size scaler instantly scales down the step size of gradient-based adaptive algorithms whenever impulsive measurement noise appears, which eliminates a possibility of updating weight vector estimates based on wrong information due to impulsive noise. The most attractive feature of the step-size scaler is that this is easily applicable to various gradient-based adaptive algorithms. Several representative gradient-based adaptive algorithms are performed without or with the step-size scaler in impulsive-noise environments, which shows the improvement of robustness against impulsive noise.
机译:本简介通过研究和修改 $ tanh $ 成本函数以进行脉冲自适应滤波,介绍了步长缩放器的概念。测量噪声。每当出现脉冲测量噪声时,步长缩放器都会立即缩小基于梯度的自适应算法的步长,从而消除了由于脉冲噪声而基于错误信息更新加权矢量估计的可能性。步长缩放器最吸引人的特点是,它很容易应用于各种基于梯度的自适应算法。在脉冲噪声环境中不使用步长缩放器或不使用步长缩放器的情况下,执行了几种具有代表性的基于梯度的自适应算法,这显示了针对脉冲噪声的鲁棒性的提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号