首页> 外文期刊>Circuits and Systems II: Express Briefs, IEEE Transactions on >Reliable Domain Adaptation With Classifiers Competition for Image Classification
【24h】

Reliable Domain Adaptation With Classifiers Competition for Image Classification

机译:可靠的域适应与分类器竞争进行图像分类

获取原文
获取原文并翻译 | 示例

摘要

Unsupervised domain adaptation (UDA) tries to utilize the labeled source domain knowledge to help the learning of unlabeled target domain. Existing methods address this problem either by minimizing joint distribution divergence and generating the pseudo target labels by source classifier, or by aligning two domains in manifold subspace. However, they ignore two significant issues: 1) unreliable distribution alignment, which means the source classifier always misclassifies partial target data which may deteriorate adaptation performance when using pseudo labels, 2) insufficient divergence reduction, which means that distribution alignment often focuses on reducing domain shift in original space, where large discrepancy and feature distortion are hard to overcome. On the other hand, reducing distribution divergence only in manifold space is often not sufficient. To alleviate these issues, a Reliable Domain Adaptation (RDA) method is proposed in this brief. Specifically, double task-classifiers and dual domain-specific projections are introduced to align easily misclassified and unreliable target samples into reliable ones in an adversarial manner. Moreover, the domain differences in both manifold and category space are eliminated. Extensive experiments on diverse databases prove the effectiveness of RDA over state-of-the-art unsupervised domain adaptation methods.
机译:无监督域适应(UDA)尝试利用标记的源域知识来帮助学习未标记的目标域。通过最小化联合分配发散并由源分类器生成伪目标标签,或者通过对齐歧管子空间中的两个域来解决现有问题。但是,他们忽略了两个重要问题:1)不可靠的分发对齐,这意味着源分类器始终错误分配使用伪标签时可能会恶化适应性的部分目标数据,2)发散不足的分歧,这意味着分布对准通常侧重于降低原始空间中的域移位,其中很大的差异和特征失真很难克服。另一方面,仅在歧管空间中降低分布分发通常是不够的。为了减轻这些问题,在本简要内提出了一种可靠的域适应(RDA)方法。具体地,引入双重任务分类器和双域特异性突起以使容易错误分类和不可靠的目标样品对齐,以越野方式。此外,消除了歧管和类别空间的域差异。关于不同数据库的广泛实验证明了RDA在最先进的无人监督域适应方法上的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号