首页> 外文期刊>Chinese Optics Letters >Supervised non-negative matrix factorization based latent semantic image indexing
【24h】

Supervised non-negative matrix factorization based latent semantic image indexing

机译:基于监督的非负矩阵分解的潜在语义图像索引

获取原文
获取原文并翻译 | 示例

摘要

A novel latent semantic indexing (LSI) approach for content-based image retrieval is presented in this paper. Firstly, an extension of non-negative matrix factorization (NMF) to supervised initialization is discussed. Then, supervised NMF is used in LSI to find the relationships between low-level features and high-level semantics. The retrieved results are compared with other approaches and a good performance is obtained.
机译:提出了一种新颖的基于内容的图像检索潜在语义索引(LSI)方法。首先,讨论了非负矩阵分解(NMF)到监督初始化的扩展。然后,在LSI中使用受监督的NMF来查找底层特征与高层语义之间的关系。将检索到的结果与其他方法进行比较,可以获得良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号