首页> 外文期刊>Systems Engineering and Electronics, Journal of >Improved method for the feature extraction of laser scanner using genetic clustering
【24h】

Improved method for the feature extraction of laser scanner using genetic clustering

机译:基于遗传聚类的激光扫描仪特征提取的改进方法

获取原文
获取原文并翻译 | 示例

摘要

Feature extraction of range images provided by ranging sensor is a key issue of pattern recognition. To automatically extract the environmental feature sensed by a 2D ranging sensor laser scanner, an improved method based on genetic clustering VGA-clustering is presented. By integrating the spatial neighbouring information of range data into fuzzy clustering algorithm, a weighted fuzzy clustering algorithm (WFCA) instead of standard clustering algorithm is introduced to realize feature extraction of laser scanner. Aimed at the unknown clustering number in advance, several validation index functions are used to estimate the validity of different clustering algorithms and one validation index is selected as the fitness function of genetic algorithm so as to determine the accurate clustering number automatically. At the same time, an improved genetic algorithm IVGA on the basis of VGA is proposed to solve the local optimum of clustering algorithm, which is implemented by increasing the population diversity and improving the genetic operators of elitist rule to enhance the local search capacity and to quicken the convergence speed. By the comparison with other algorithms, the effectiveness of the algorithm introduced is demonstrated.
机译:测距传感器提供的距离图像特征提取是模式识别的关键问题。为了自动提取二维测距传感器激光扫描仪感测到的环境特征,提出了一种基于遗传聚类VGA聚类的改进方法。通过将距离数据的空间邻近信息集成到模糊聚类算法中,引入加权模糊聚类算法(WFCA)代替标准聚类算法,实现了激光扫描仪的特征提取。预先针对未知的聚类数,使用多个验证指标函数来估计不同聚类算法的有效性,并选择一个验证指标作为遗传算法的适应度函数,以自动确定准确的聚类数。同时,提出了一种基于VGA的改进遗传算法IVGA,以解决聚类算法的局部最优问题。该算法通过增加种群多样性和改善精英规则的遗传算子来提高局部搜索能力,从而解决聚类算法的局部最优问题。加快收敛速度​​。通过与其他算法的比较,证明了所引入算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号