首页> 外文期刊>Celestial Mechanics and Dynamical Astronomy >Ordered and chaotic Bohmian trajectories
【24h】

Ordered and chaotic Bohmian trajectories

机译:有序和混沌的Bohmian轨迹

获取原文
获取原文并翻译 | 示例

摘要

We discuss the issue of ordered and chaotic trajectories in the Bohmian approach of Quantum Mechanics from points of view relevant to the methods of Celestial Mechanics. The Bohmian approach gives the same results as the orthodox (Copenhagen) approach, but it considers also underlying trajectories guided by the wave. The Bohmian trajectories are rather different from the corresponding classical trajectories. We give examples of a classical chaotic system that is ordered quantum-mechanically and of a classically ordered system that is mostly chaotic quantum mechanically. Then we consider quantum periodic orbits and ordered orbits, that can be represented by formal series of the “third integral” type, and we study their asymptotic properties leading to estimates of exponential stability. Such orbits do not approach the “nodal points” where the wavefunction ψ vanishes. On the other hand, when an orbit comes close to a nodal point, chaos is generated in the neighborhood of a hyperbolic point (called X-point). The generation of chaos is maximum when the X-point is close to the nodal point. Finally we remark that high order periodic orbits may behave as “effectively ordered” or “effectively chaotic” for long times before reaching the period.
机译:我们从与天体力学方法有关的观点出发,讨论了量子力学的波姆方法中的有序和混沌轨迹问题。鲍姆方法的结果与正统(哥本哈根)方法的结果相同,但它也考虑了波浪引导的基本轨迹。玻姆氏轨迹与相应的经典轨迹有很大的不同。我们给出了一个经典的混沌系统的例子,该系统是量子力学上有序的,而一个经典的序列系统则主要是量子上是混沌的。然后,我们考虑可以用“第三积分”类型的形式级数表示的量子周期轨道和有序轨道,并研究它们的渐近性质,从而估计出指数稳定性。这样的轨道不会接近波函数ψ消失的“节点”。另一方面,当轨道接近节点时,在双曲线点(称为X点)附近会产生混乱。当X点接近节点时,混沌的产生最大。最后,我们指出,高阶周期轨道在达到周期之前可能长时间表现为“有效有序”或“有效混沌”。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号