首页> 外文期刊>Calculus of Variations and Partial Differential Equations >Sharp bounds on the volume fractions of two materials in a two-dimensional body from electrical boundary measurements: the translation method
【24h】

Sharp bounds on the volume fractions of two materials in a two-dimensional body from electrical boundary measurements: the translation method

机译:从电边界测量中二维物体中两种材料的体积分数的清晰边界:平移方法

获取原文
获取原文并翻译 | 示例

摘要

We deal with the problem of estimating the volume of inclusions using a small number of boundary measurements in electrical impedance tomography. We derive upper and lower bounds on the volume fractions of inclusions, or more generally two phase mixtures, using two boundary measurements in two dimensions. These bounds are optimal in the sense that they are attained by certain configurations with some boundary data. We derive the bounds using the translation method which uses classical variational principles with a null Lagrangian. We then obtain necessary conditions for the bounds to be attained and prove that these bounds are attained by inclusions inside which the field is uniform. When special boundary conditions are imposed the bounds reduce to those obtained by Milton and these in turn are shown here to reduce to those of Capdeboscq–Vogelius in the limit when the volume fraction tends to zero. The bounds of this article, and those of Milton, work for inclusions of arbitrary volume fractions. We then perform some numerical experiments to demonstrate how good these bounds are.
机译:我们使用电阻抗断层扫描中的少量边界测量来处理估计夹杂物的数量的问题。我们使用二维的两个边界测量,得出了夹杂物(或更一般地说是两相混合物)的体积分数的上限和下限。这些界限是最佳的,因为它们是由具有某些边界数据的某些配置实现的。我们使用翻译方法导出边界,该翻译方法使用具有零拉格朗日规则的经典变分原理。然后,我们获得要达到边界的必要条件,并证明这些边界是由包含在其中的电场是均匀的包含物达到的。当施加特殊的边界条件时,边界将减小为Milton所获得的边界,并且当体积分数趋于零时,边界将减小为Capdeboscq-Vogelius的边界。本文和Milton的界限都适用于包含任意体积分数。然后,我们进行一些数值实验,以证明这些界限有多好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号