首页> 外文期刊>IEEE Transactions on Broadcasting >Motion estimation for video compression using Kalman filtering
【24h】

Motion estimation for video compression using Kalman filtering

机译:使用卡尔曼滤波的视频压缩运动估计

获取原文
获取原文并翻译 | 示例

摘要

Motion estimation plays an important role for the compression of video signals. This paper presents a new block-based motion estimation method using Kalman filtering. The new method utilizes the predicted motion and measured motion to obtain an optimal estimate of motion vector. The autoregressive models are employed to fit the motion correlation between neighboring blocks and then achieve predicted motion information. The measured motion information is obtained by the conventional block-based fast search schemes. Several algorithms based on either one- or two dimensional models using either nonadaptive or adaptive Kalman filters are developed. The analysis of computational complexity and the simulation results indicate that the proposed method achieves significant savings on computation along with smoother motion vector fields and similar picture quality, when compared to the conventional full search algorithm.
机译:运动估计对于视频信号的压缩起着重要的作用。本文提出了一种新的基于卡尔曼滤波的基于块的运动估计方法。该新方法利用预测运动和测量运动来获得运动矢量的最佳估计。使用自回归模型来拟合相邻块之间的运动相关性,然后获得预测的运动信息。通过常规的基于块的快速搜索方案获得测量的运动信息。基于非自适应或自适应卡尔曼滤波器的基于一维或二维模型的几种算法得到了发展。对计算复杂度的分析和仿真结果表明,与常规的全搜索算法相比,该方法在节省计算量的同时,还具有更平滑的运动矢量场和相似的图像质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号