首页> 外文期刊>Broadcasting, IEEE Transactions on >Objective Video Quality Assessment Methods: A Classification, Review, and Performance Comparison
【24h】

Objective Video Quality Assessment Methods: A Classification, Review, and Performance Comparison

机译:客观的视频质量评估方法:分类,审查和性能比较

获取原文
获取原文并翻译 | 示例

摘要

With the increasing demand for video-based applications, the reliable prediction of video quality has increased in importance. Numerous video quality assessment methods and metrics have been proposed over the past years with varying computational complexity and accuracy. In this paper, we introduce a classification scheme for full-reference and reduced-reference media-layer objective video quality assessment methods. Our classification scheme first classifies a method according to whether natural visual characteristics or perceptual (human visual system) characteristics are considered. We further subclassify natural visual characteristics methods into methods based on natural visual statistics or natural visual features. We subclassify perceptual characteristics methods into frequency- or pixel-domain methods. According to our classification scheme, we comprehensively review and compare the media-layer objective video quality models for both standard resolution and high definition video. We find that the natural visual statistics based MultiScale-Structural SIMilarity index (MS-SSIM), the natural visual feature based Video Quality Metric (VQM), and the perceptual spatio-temporal frequency-domain based MOtion-based Video Integrity Evaluation (MOVIE) index give the best performance for the LIVE Video Quality Database.
机译:随着对基于视频的应用程序的需求不断增长,对视频质量进行可靠预测的重要性日益提高。过去几年中,已经提出了许多视频质量评估方法和指标,其计算复杂性和准确性各不相同。在本文中,我们介绍了针对全参考和降参考的媒体层客观视频质量评估方法的分类方案。我们的分类方案首先根据是考虑自然视觉特征还是感知(人类视觉系统)特征对方法进行分类。我们将自然视觉特征方法进一步细分为基于自然视觉统计或自然视觉特征的方法。我们将感知特征方法细分为频域或像素域方法。根据我们的分类方案,我们全面审查和比较了标准分辨率和高清视频的媒体层客观视频质量模型。我们发现基于自然视觉统计的MultiScale-Structural SIMilarity Index(MS-SSIM),基于自然视觉特征的视频质量度量(VQM)和基于感知时空时域的基于运动的视频完整性评估(MOVIE)索引可为LIVE Video Quality Database提供最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号