首页> 外文期刊>IEEE Transactions on Broadcasting >A Novel Time Series Approach for Predicting the Long-Term Popularity of Online Videos
【24h】

A Novel Time Series Approach for Predicting the Long-Term Popularity of Online Videos

机译:一种预测在线视频长期受欢迎程度的新颖时间序列方法

获取原文
获取原文并翻译 | 示例

摘要

Predicting the video popularity is an essential part of fast growing online media services. It is beneficial to an array of domains, from targeted advertising, personalized recommendation, to traffic load optimization. However, popularity prediction is a challenge problem due to the uncertainty of information cascade. In this paper, we treat the popularity of online videos as time series over the given periods and propose a novel time series model for popularity prediction. The proposed model is based on the correlation between early and future popularity series. Instead of inferring the precise view counts for a video, this paper focuses on accurately identifying the most popular videos based on the predicted popularity, because it is of the most interest to service providers. Experimental result on real world data have demonstrated that the proposed model outperforms several existing popularity prediction models.
机译:预测视频受欢迎程度是快速增长的在线媒体服务的重要组成部分。从目标广告,个性化推荐到流量负载优化,这对一系列领域都是有益的。然而,由于信息级联的不确定性,流行度预测是一个挑战性的问题。在本文中,我们将在线视频的受欢迎程度视为给定时间段内的时间序列,并提出了一种新颖的时间序列模型来进行流行度预测。所提出的模型基于早期和未来流行度系列之间的相关性。本文不基于视频的准确观看次数,而是着眼于根据预测的受欢迎程度准确识别最受欢迎的视频,因为它对服务提供商最感兴趣。对现实世界数据的实验结果表明,该模型优于几种现有的流行度预测模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号